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Abstract  In this paper, we establish weak and strong duality theorems for a pair of multi-objective 
symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in 
vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126". 
 
Keywords Nonlinear Programming, Multiobjective Programming, Symmetric Duality, Efficient 
Solutions. 
 
 
1 Introduction  
 
Optimality conditions and duality have played an important role in the development of 
mathematical programming in single-objective as well as multi-objective problems. Several 
papers have appeared in the recent past on multi-objective problems. Arana et al. [1] 
discussed Kuhn-Tucker and Fitz-John type necessary and sufficient conditions and duality for 
a non-differentiable multiobjective problem. 

Mangasarian [2] introduced the concept of second and higher-order duality for nonlinear 
programs. This motivated several authors in this field. Kim et al. [3] formulated a pair of 
second-order multiobjective symmetric dual programs and proved duality theorems. Yang and 
Hou [4] established duality results for second-order symmetric dual programs under invexity 
assumptions. In [5] and [6], Ahmad and Husain discussed Wolfe and Mond-Weir type multi-
objective second-order symmetric dual programs with cone constraints under invexity and 
generalized invexity assumptions, respectively. Recently, Kailey and Gupta [7] studied non-
differentiable second-order mixed symmetric duality with cone constraints under ( , )F   
convexity/psuedo-convexity assumptions. Agrawal et al. [8] established a strong duality 
theorem for Mond-Weir type multiobjective higher-order non-differentiable symmetric dual 
programs. 

The symmetric dual problems in the above papers involve a single kernel function 
( , )f x y . Kassem [9] formulated the following pair of symmetric dual problems involving two 

kernel functions f  and g : 
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Min  ( , ) ( ( )( , )) ( ( )( , ) )T T T T
y yf x y y f x y e y w g x y p e     

 

s. t.  ( )( , ) ( )( , ) 0T T T
y yf x y p w g x y    ,      , 0,x p   

 

 > 0 ,    > 0,w     = 1,T e     = 1,Tw e   
 
and 

 
Max ( , ) ( ( )( , )) ( ( )( , ) )T T T T

x xf u v u f u v e u w g u v p e     
 

s. t. ( )( , ) ( )( , ) 0T T T
x xf u v p w g u v    ,      , 0,v p   

 

 > 0 ,    > 0,w     = 1,T e     = 1,Tw e   
 

 where : ,n n mf R R R   : ,n n rg R R R   ,np R  ,mR  rw R  and = (1,1,...,1)Te  are 
of appropriate dimension. 

 
It has been observed in [10] that involving two kernel functions as above has altered the 

dimensions of the terms in the objective function and the constraints. This has led to several 
omissions in the models as well as in the proofs of the duality theorems. For example, the first 
two terms in each objective function are vectors, while the third term is not a vector. Also, the 
vector ( )( , )T

y w g x y  has been assumed to be positivly definite [9]. 
In this note, we present symmetric dual multi-objective problems involving two kernel 

functions and establish weak, strong and converse duality theorems. It also serves to remove 
the omissions in [9]. 
 
 
2 Prerequisites  
 
Let : n pK R R  be a twice differentiable function, ( )x yK K   denote the  ( )n p m p   
matrix of first order partial derivatives and xy iK  denote the n m  matrix of second order 
partial derivatives. All vectors shall be considered as column vectors. For two vectors a  and 
b  in ,nR   
 
( ).  ( = 1, 2,..., ); i ii a b a b i n    

 

( ). , ;ii a b a b and a b     
 

( ). > >  ( = 1,2,..., ).i iiii a b a b i n  
 
Consider the multi-objective optimization problem : 

 
 (P)  
Min 1 2( ) = { ( ), ( ),..., ( )}pK x K x K x K x  

s. t. = { : ( ) 0}nx X x R G x   ,  
 
where : n mG R R . 
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 Definition 1. [11] A point x X   is said to be an efficient solution of (P) if there exists no 
x X   such that ( ) ( )K x K x . 
 
 
3 Wolfe type Symmetric Duality  
 
We now consider the following pair of Wolfe type symmetric multiobjective programming 
problems:  

 
(WP) 
Min  { ( , ) ( ( ( , ))) ( ( ( ( , )) )) }T T T T

y yyf x y y f x y e y w g x y p e     
 

s. t. ( ( , )) ( ( , )) 0,T T
y yyf x y w g x y p    (1) 

  
= 1, > 0,T e   (2) 

  
0.x  (3) 

 
 

(WD) 
Max  { ( , ) ( ( ( , ))) ( ( ( ( , )) )) }T T T T

x xxf u v u f u v e u w g u v q e     
 

s. t. ( ( , )) ( ( , )) 0,T T
x xxf u v w g u v q    (4) 

  
= 1, > 0,T e   (5) 

 
0,v  (6) 

 
where 
(i) : n m kf R R R   is a twice differentiable function of x  and y , 
(ii) : n m rg R R R   is a thrice differentiable function of x  and y , 
(iii) ,kR  ,rw R  mp R , , = (1,1,...,1)n T kq R e R  , 
 
 If   is fixed to be   in problem (WD), then it will be denoted (WD)  . 
 
 
The duality results 
 
Theorem 1. (Weak duality). Let ( , , , , )x y w p  be feasible for (WP) and ( , , , , )u v w q  be 
feasible for (WD). Let 
 
(i) (., )f v  be convex at u  for fixed v , 
(ii) ( ,.)f x  be convex at y  for fixed x ,  
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(iii) ( ) ( )( , ) 0   ( ) ( )( , ) 0.T T T T
xx yyx u w g u v q and v y w g x y p      

 
Then 
 

( , ) ( ( ( , ))) ( ( ( , )) )T T T T
x xxf u v u f u v e u w g u v q e      

( , ) ( ( ( , ))) ( ( ( , )) ) ).T T T T
y yyf x y y f x y e y w g x y p e     

 
 Proof. Suppose to the contrary that 
 

( , ) ( ( ( , ))) ( ( ( , )) )T T T T
x xxf u v u f u v e u w g u v q e      

                                                                   
( , ) ( ( ( , ))) ( ( ( , ) ) ).T T T T

y yyf x y y f x y e y w g x y p e     
 

Since > 0  and = 1T e , the above vector inequality implies 
 

[ ( , ) ( ( ( , ))) ( ( ( , )) ) ] >T T T T T
x xxf u v u f u v e u w g u v q e      

                                                             
[ ( , ) ( ( ( , ))) ( ( ( , )) ) ]T T T T T

y yyf x y y f x y e y w g x y p e      
 
or 
 

( , ) ( ( , )) ( ( , )) > ( , ) ( ( , ))

( ( , )) .

T T T T T T T T
x xx y

T T
yy

f u v u f u v u w g u v q f x y y f x y

y w g x y p

        

      (7) 

 
Now by convexity of (., )f v , we have 
 

( , ) ( , ) ( ) ( , ).T
xf x v f u v x u f u v    

 
As > 0 , 

 
( ( , ) ( , )) ( ) ( ( , )).T T T

xf x v f u v x u f u v     (8) 
 
Constraints (3) and (4) imply 
 

( ( ( , )) ( ( , )) ) 0,T T T
x xxx f u v w g u v q    or 

 
( ( , )) ( ( , ))T T T T

x xxx f u v x w g u v q    
 

 ( ( , ))T T
xxu w g u v q   (by hypothesis (iii)). 

 
Therefore, inequality (8) yields 
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( , ) ( , ) ( ( ( , )) ( ( , )) ).T T T T T
x xxf x v f u v u f u v w g u v q       (9) 

 
Similarly by hypothesis (ii), (iii) and constraints (1) and (6), we get 

 
( , ) ( , ) ( ( ( , )) ( ( , )) ).T T T T T

y yyf x y f x v y f x y w g x y p      (10) 
 
Adding (9) and (10), we obtain 
 

( , ) ( ( , )) ( ( , )) ( , ) ( ( , ))

( ( , )) ,

T T T T T T T T
y yy x

T T
xx

f x y y f x y y w g x y p f u v u f u v

u w g u v q

        

 


 

 
which contradicts (7). This completes the proof.                                                                          

  
Theorem 2. (Strong duality). Let ( , , , , )x y w p  be an efficient solution for (WP). Assume 
that 
 
(i) ( ( , ))T

yy w g x y  is nonsingular, 
(ii) the set { ( , ), = 1, 2, , }y if x y i k   is linearly independent, and 

(iii) ( ( , ))T
yy w g x y p  span 1{ ( , ),..., ( , )} \{0}y y kf x y f x y  . 
 

Then ( , , , = 0)x y w q  is feasible for (WD)  , and the objective function values of (WP)   and 
(WD)   are equal. Also, if the hypotheses of Theorem 1 are satisfied for all feasible solutions 
of (WP)   and (WD)  , then ( , , , = 0)x y w q  is an efficient solution for (WD)  . 
 
Proof. Since ( , , , , )x y w p  is an efficient solution for (WP), by the Fritz John necessary 
optimality conditions [12], there exist kR  , mR  , ,   ,k nR R and R      such that 
the following conditions are satisfied at ( , , , , )x y w p  : 
 

( ( , )) ( ( ( , )) ( ( ( , )) )) ( ( ) ) = 0,    T T T T T
x yx x yyf x y f x y w g x y p e y               (11) 

( , )( ( ) ) ( ( ( , )) ( ( ( , )) ))( ( ) )T T T T
y yy y yyf x y e f x y w g x y p e y             

( ) ( ( , )) = 0,T T
yye w g x y p   (12) 

( ( ) ) ( , ) = 0,T T T
ye y f x y e          (13) 

( ( ) ) ( ( ( , )) ) = 0,T T T
w yye y w g x y p                        (14) 

( ( ) ) ( ( , )) = 0,T T T
yye y w g x y       (15) 

( ( ( , )) ( ( , )) ) = 0,T T T
y yyf x y w g x y p         (16) 

= 0, T               (17) 
= 0, Tx               (18) 

( , , , ) 0,         (19) 
( , , , , ) 0      .       (20) 
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As > 0,  from (17) we conclude = 0 . By hypothesis (i), equation (15) implies 
= ( ) .T e y            (21) 

 
Thus (13) yield = 0.  Now suppose, = 0.  Then by relation (21), = 0  and so = 0  by 
(11), which contradicts ( , , , ) 0.      Thus, 0  , i.e., 0   or 
 

> 0.T e   (22) 
 

From (21) and (22), 
 

= 0.Ty
e





 

 
Now, from (12) and (21), we have 

 
( , )( ( ) ) = ( ) ( ( , )) . T T T

y yyf x y e e w g x y p        (23) 
 

Using hypothesis (iii), the above relation implies ( ) ( ( , )) = 0,T T
yye w g x y p   which by (22) 

and hypothesis (i) imply  
 

= 0. p            (24) 
 
Thus, (23) gives ( , )( ( ) ) = 0.T

y f x y e     
Since the set { , = 1, , }y if i k   is linearly independent, 
 

= ( ) .  T e      (25) 
 
Using (21), (22) and (25) in (11), we get 

 
( ( , )) = 0.T

x f x y    
 

Thus, ( , , , = 0)x y w q  is a feasible solution for the dual problem (WD)  . Further, from 
(16), (21), (22) and (24), we obtain ( ( , )) = 0.T T

yy f x y  Hence, (WP)   and (WD)   have 
equal objective function values. Now, suppose ( , , , = 0)x y w q  is not an efficient solution for 
(WD)  , then there exist ( , , , )u v w q  feasible for (WD)  , such that 
 
( ( , ) ( ( , )) ( ( ( ( , )) )) )T T T T

x xxf u v u f u v e u w g u v q e                                      
( ( , ) ( ( , )) ( ( ( ( , )) )) ) 0.T T T T

x xxf x y x f x y e x w g x y q e      
 
Since 
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= 0, = 0, ( ( , )) = 0T T
xp q x f x y  and ( ( , )) = 0T T

yy f x y , 
( ( , ) ( ( , )) ( ( ( ( , )) )) )T T T T

x xxf u v u f u v e u w g u v q e      
( ( , ) ( ( , )) ( ( ( ( , )) )) ) 0,T T T T

y yyf x y y f x y e y w g x y p e      
 

which contradicts the weak duality theorem. Hence ( , , , = 0)x y w q  is an efficient solution for 
(WD)  .       
 
Theorem 3. (Converse duality). Let ( , , , , )u v w q  be an efficient solution for (WD). Assume 
that 
 
(i) ( )( , )T

xx w g u v  is nonsingular, 
(ii) the set { ( , ), = 1, , }x if u v i k   is linearly independent, and 
(iii) ( )( , )T

xx w g u v q  span 1{ ( , ),..., ( , )}\{0}x x kf u v f u v  . 
 

Then, ( , , , = 0)u v w p  is feasible for (WP)  , and the objective function values of (WP)   and 
(WD) are equal. Also, if the hypotheses of Theorem 1 are satisfied for all feasible solutions of 
(WP)   and (WD)  , then ( , , , = 0)u v w p  is an efficient solution for (WP)  . 

 
Proof. Follows on the lines of Theorem 2. 
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