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Abstract In this paper, the Kadomtsev-Petviashvili equation is solved by using the Adomian’s 
decomposition method , modified Adomian’s decomposition method , variational iteration method , 
modified variational iteration method, homotopy perturbation method, modified homotopy 
perturbation method and homotopy analysis method. The existence and uniqueness of the solution and 
convergence of the proposed methods are proved in details. A numerical example is studied to 
demonstrate the accuracy of the presented methods. 
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1 Introduction 
 
In 1970, Kadomtsev and Petviashvili [1] generalized the KDV equation to two space variables 
and formulated the well-known Kadmotsev-Petviashvili equation to provide an explanation of 
the general weakly dispersive waves [2-10]. In this work, we develope the ADM, MADM, 
VIM, MVIM, HPM, MHPM and HAM to solve this equation as follows: 

 

0.=),(),(),(
2
1),( 2 txsutxvutxutxu xxxt    (1) 

 
With the initial condition: 

 
).(=,0)( xgxu  (2) 

 
Where )(xg , ),( tx , ),( tx , ),( txv  and ),( txs  are known functions. 

The paper is organized as follows. In section 2, the mentioned iterative methods are 
introduced for solving Eq.(1). In section 3 we prove the existence , uniqueness of the solution and 
convergence of the proposed methods. Finally, the numerical example is shown in section 4. 
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In order to obtain an approximate solution of Eq.(1), let us integrate one time Eq.(1) with 
respect to t  using the initial condition we obtain, 

 

,)),(()),((),((),(=),( 302010
 dxuFdxuFdxuFtxGtxu

ttt

   (3) 

 
where, 
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In Eq.(3), we assume ),( txG  is bounded for all tx,  in )]([0,= RTTJ . 
The terms )),((1 txuF , )),((2 txuF  and )),((3 txuF  are Lipschitz continuous with 

|||)()(| *
1

*
11 uuLuFuF  , |||)()(| *

2
*

22 uuLuFuF   and |||)()(| *
3

*
33 uuLuFuF  . 

 
 
2 The iterative methods 
2.1 Description of the MADM and ADM 

 
The Adomian decomposition method is applied to the following general nonlinear equation  

,= fNuRuLu   (4) 
 
where ),( txu  is the unknown function, L  is the highest order derivative operator which is 
assumed to be easily invertible, R  is a linear differential operator of order less than NuL,  
represents the nonlinear terms, and f  is the source term. Applying the inverse operator 1L  to 
both sides of Eq.(4), and using the given conditions we obtain  

),()()(=),( 11 NuLRuLxztxu    (5) 
 
where the function )(xz  represents the terms arising from integrating the source term f . The 
nonlinear operator )(= 1 uGNu  is decomposed as  

,=)(
0=

1 n
n

AuG 


 (6) 

 
where 0, nAn  are the Adomian polynomials determined formally as follows: 
 

.)]]([[
!

1= 0=
0=


 i

i

i
n

n

n uN
d
d

n
A 
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 (7) 

  
The first Adomian polynomials (introduced in [11,12,13]) are: 
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),(= 010 uGA  
),(= 0111 uGuA   

),(
2!
1)(= 01

2
10122 uGuuGuA   (8) 

),...(
3!
1)()(= 01

3
101210133 uGuuGuuuGuA   

 
 
2.1.1 Adomian decomposition method 
 
The standard decomposition technique represents the solution of ),( txu  in (4) as the following 
series,  

),,(=),(
0=

txutxu i
i



 (9) 

where, the components ),,(),,( 10 txutxu  which can be determined recursively 
  

),,(=),(0 txGtxu  

,),(),(),(=),( 0000001 dttxLdttxBdttxAtxu
ttt

   

  
0.,),(),(),(=),(

0001   ndttxLdttxBdttxAtxu n

t

n

t

n

t

n  (10) 

 
Substituting (8) into (10) leads to the determination of the components of ),( txu . 

 
 

2.1.2 The modified Adomian decomposition method 
 
The modified decomposition method was introduced by Wazwaz [14]. The modified forms was 
established on the assumption that the function ),( txG  can be divided into two parts, namely 

),(1 txG  and ),(2 txG . Under this assumption we set  
 

).,(),(=),( 21 txGtxGtxG   (11) 
 
Accordingly, a slight variation was proposed only on the components 0u  and 1u . The 
suggestion was that only the part 1G  be assigned to the zeroth component 0u , whereas the 
remaining part 2G  be combined with the other terms given in (11) to define 1u . Consequently, 
the modified recursive relation  
 

),,(=),( 10 txGtxu  
),()(),(=),( 0

1
0

1
21 ALRuLtxGtxu    (12) 

  
1,),()(=),( 11

1  
 nALRuLtxu nnn  

was developed. 
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To obtain the approximation solution of Eq.(1), according to the MADM, we can write the 
iterative formula (12) as follows: 
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The operators )),(( txuFi  1,2,3)=(i  are usually represented by the infinite series of the 
Adomian polynomials as follows: 
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where iA , iB  and iL  are the Adomian polynomials. 
Also, we can use the following formula for the Adomian polynomials [15]: 
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 (14) 

 
Where ),(=

0=
txus i

n

in   is the partial sum. 
 
 

2.2 Description of the VIM and MVIM 
 
In the VIM [ 16-23], it has been considered the following nonlinear differential equation:  
 

,= GNuLu   (15) 
 
where L  is a linear operator, N  is a nonlinear operator and G  is a known analytical 
function. In this case, the functions nu  may be determined recursively by  
 

0,,)},()),(()),((){,(),(=),(
01   ndxGxuNxuLxtxutxu nn

t

nn   (16) 
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where   is a general Lagrange multiplier which can be computed using the variational theory. 
Here the function ),( xun  is a restricted variations which means 0=nu . Therefore, we first 
determine the Lagrange multiplier   that will be identified optimally via integration by parts. 
The successive approximation ),( txun , 0n  of the solution ),( txu  will be readily obtained 
upon using the obtained Lagrange multiplier and by using any selective function 0u . The 
zeroth approximation 0u  may be selected any function that just satisfies at least the initial and 
boundary conditions. With   determined, then several approximation ),( txun , 0n  follow 
immediately. Consequently, the exact solution may be obtained by using  
 

).,(lim=),( txutxu n
n 

 (17) 

 
The VIM has been shown to solve effectively, easily and accurately a large class of nonlinear 
problems with approximations converge rapidly to accurate solutions. 

To obtain the approximation solution of Eq.(1), according to the VIM, we can write 
iteration formula (16) as follows: 

 

0.]),)),(()),((

)),((),(),([(),(=),(
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 (18) 

 
Where, 

.(.)=(.)
0

1 dL
t

t   

 
To find the optimal  , we proceed as 
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 (19) 

 
From Eq.(19), the stationary conditions can be obtained as follows: 
 

0='  and 0=1  . 
 
Therefore, the Lagrange multipliers can be identified as 1=   and by substituting in (18), the 
following iteration formula is obtained. 
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To obtain the approximation solution of Eq.(1), based on the MVIM [24,25], we can write the 
following iteration formula: 
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Relations (20) and (21) will enable us to determine the components ),( txun  recursively for 

0n . 
 
 

2.3 Description of the HAM 
 

Consider 0,=][uN where N  is a nonlinear operator, ),( txu  is an unknown function and x  
is an independent variable. let ),(0 txu  denote an initial guess of the exact solution ),( txu , 

0h  an auxiliary parameter, 0),(1 txH  an auxiliary function, and L  an auxiliary linear 
operator with the property 0=)],([ txrL  when 0=),( txr . Then using [0,1]q  as an 
embedding parameter, we construct a homotopy as follows: 

 
].,),,(),,();;,([ˆ=)];,([),()],();,([)(1 1010 qhtxHtxuqtxHqtxNtxqhHtxuqtxLq    (22) 

 
It should be emphasized that we have great freedom to choose the initial guess ),(0 txu , the 
auxiliary linear operator L , the non-zero auxiliary parameter h , and the auxiliary function 

),(1 txH . 
Enforcing the homotopy (22) to be zero, i.e., 
 

0,=],),,(),,();;,([ˆ
101 qhtxHtxuqtxH   (23) 

 
we have the so-called zero-order deformation equation 
 

)].;,([),(=)],();,([)(1 10 qtxNtxqhHtxuqtxLq    (24) 
 
When 0=q , the zero-order deformation Eq.(24) becomes 
 

),,(=;0)( 0 txux  (25) 
 
and when 1=q , since 0h  and 0),(1 txH , the zero-order deformation Eq.(24) is 
equivalent to 
 

).,(=;1),( txutx  (26) 
 
Thus, according to (26) and (26), as the embedding parameter q  increases from 0  to 1, 

);,( qtx  varies continuously from the initial approximation ),(0 txu  to the exact solution 
),( txu . Such a kind of continuous variation is called deformation in homotopy [26-29]. 

Due to Taylor’s theorem, );,( qtx  can be expanded in a power series of q  as follows 
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,),(),(=);,(
1=

0
m

m
m

qtxutxuqtx 
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  (27) 

where, 

.|);,(
!

1=),( 0=qm

m

m q
qtx

m
txu


   

 
Let the initial guess ),(0 txu , the auxiliary linear parameter L , the nonzero auxiliary parameter 
h  and the auxiliary function ),(1 txH  be properly chosen so that the power series (27) of 

);,( qtx  converges at 1=q , then, we have under these assumptions the solution series 

).,(),(=;1),(=),(
1=

0 txutxutxtxu m
m



  (28) 

 
From Eq.(27), we can write Eq.(24) as follows 
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By differentiating (29) m  times with respect to q , we obtain 
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Therefore, 
 

)),,((),(=)],(),([ 111 txutxhHtxutxuL mmmmm     (30) 
 
where, 

 

,|)];,([
1)!(

1=)),(( 0=1

1

1 qm

m

mm q
qtxN

m
txu 



 





  (31) 

and 
 



 

1>1,
10,

=
m
m

m  

Note that the high-order deformation Eq.(30) is governing the linear operator L , and the term 
)),(( 1 txumm   can be expressed simply by (31) for any nonlinear operator N . 

To obtain the approximation solution of Eq.(1), according to HAM, let  

,)),(()),(()),((),(),(=)],([ 302010
dttxuFdttxuFdttxuFtxGtxutxuN

ttt

   

so, 
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.)),((

)),(()),((),(),(=)),((
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 (32) 

 
Substituting (32) into (30) 
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110111

txGdttxuFdttxuF
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
  (33) 

 
We take an initial guess ),(=),(0 txGtxu , an auxiliary linear operator uLu = , a nonzero 
auxiliary parameter 1= h , and auxiliary function 1=),(1 txH . This is substituted into (33) to 
give the recurrence relation 

 
0

1 1 2 30 0 0

( , ) = ( , ),

( , ) = ( ( , )) ( ( , )) ( ( , )) , 0.
t t t

n n n n

u x t G x t

u x t F u x t dt F u x t dt F u x t dt n      
 (34) 

 
Therefore, the solution ),( txu  becomes 
 

..)),(()),(()),((),(=

),(=),(

302010
1=

0=
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



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




dttxuFdttxuFdttxuFtxG

txutxu

n

t

n

t

n

t

n

n
n  (35) 

 
Which is the method of successive approximations. If  
 

1,<|),(| txun  
 
then the series solution (35) convergence uniformly. 
 
 
2.4 Description of the HPM and MHPM 

 
To explain HPM [30-36], we consider the following general nonlinear differential equation:  
 

),(= ufNuLu   (36) 
 
with initial conditions  
 

).(=,0)( xfxu  
According to HPM, we construct a homotopy which satisfies the following relation 
  

0,=)]([=),( 00 ufNupLvpLvLupuH   (37) 
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where [0,1]p  is an embedding parameter and 0v  is an arbitrary initial approximation 
satisfying the given initial conditions. 

In HPM, the solution of Eq.(37) is expressed as  
 

...),(),(),(=),( 2
2

10  txuptxuptxutxu  (38) 
 
 Hence the approximate solution of Eq.(36) can be expressed as a series of the power of p , i.e.  

...=lim= 210
1




uuuuu
p

 

 
where,  
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k
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To explain MHPM [37-42], we consider Eq.(1) as  
 

.)),((

)),(()),((),(),(=)(
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2010

dttxuF

dttxuFdttxuFtxGtxuuL
t

tt







 

 
Where )()(=)),(( 111 thxgtxuF , )()(=)),(( 222 thxgtxuF  and )()(=)),(( 333 thxgtxuF . We can 
define homotopy ),,( mpuH  by  
 

),(=),1,(),(=),0,( uLmuHufmuH  
 
where, m  is an unknown real number and  
 

).,(),(=)),(( txztxutxuf   
 
Typically we may choose a convex homotopy by  

 
1.00,=))]()()(()[(1)()()(1=),,( 321  pxgxgxgmppuLpufpmpuH  (40) 

 
Where m  is called the accelerating parameters, and for 0=m  we define 

),,(=,0),( puHpuH  which is the standard HPM. 
The convex homotopy (40) continuously trace an implicity defined curve from a starting point 

)),0,(),(( muftxuH   to a solution function ).),1,,(( mtxuH  The embedding parameter p  
monotonically increase from 0 to 1 as trivial problem 0=)(uf  is continuously deformed to 
original problem 0.=)(uL  
The MHPM uses the homotopy parameter p  as an expanding parameter to obtain  
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,=
0=

n
n

n
upv 



 (41) 

when 1p , Eq.(37) corresponds to the original one and Eq.(41) becomes the approximate 
solution of Eq.(1), i.e., 
 

.=lim=
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m
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Where,  
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xgxgxgmdttxuFdttxuFdttxuFtxu
txGtxu
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t
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t
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tm

k
m

ttt

ttt


(42) 

 
 

3  Existence and convergency of iterative methods 
 
We set, 

 
),(:= 3211 LLLT   

.1:=),(11:= 1111  TT   
 
Theorem 3.1  Let 1<<0 1 , then Kadomtsev-Petviashvili equation (1), has a unique 
solution. 
Proof. Let u  and *u  be two different solutions of (3) then 

 

.||=||)(|)),(()),((|

|)),(()),((||)),(()),((||))],(()),(([

))],(()),(([))],(()),(([|=||

*
1

*
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*
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*
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*
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*
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*
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*
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*

uuuuLLLTdttxuFtxuF

dttxuFtxuFdttxuFtxuFdttxuFtxuF

dttxuFtxuFdttxuFtxuFuu

t

ttt

tt














 
From which we get 0||)(1 *

1  uu . Since 1<<0 1 , then 0=|| *uu  . Implies *= uu  
and completes the proof.    

 
 

Theorem 3.2  The series solution ),(=),(
0=

txutxu ii


 of problem(1) using MADM 
convergence when 
 

1<<0 1 , <|),(| 1 txu . 
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Proof. Denote as ).],[( JC  the Banach space of all continuous functions on J  with the norm 
|),(|=),( txGmaxtxG , for all tx,  in J . Define the sequence of partial sums ns , let ns  and ms  

be arbitrary partial sums with mn  . We are going to prove that ns  is a Cauchy sequence in 
this Banach space: 

.|)()()(|

=|),(|=||=

1

=0

1

=0

1

=0

1=

dtLdtBdtAmax

txumaxssmaxss

i

n

mi

t
i

n

mi

t
i

n

mi

t
Jt

i

n

mi
JtmnJtmn















 

 
From [15], we have 

 

).()(=
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1

=
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1

=

1111

1

=

























mni

n
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n
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n
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sFsFL

sFsFB

sFsFA

 

 
So, 

.|)()(|

|)()(||)()(|

|)]()([)]()([)]()([|=

11313
0

1212
0

1111
0

1313
0

1212
0

1111
0

mnmn
t
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t
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t
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t
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t
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t

Jtmn

ssdtsFsF

dtsFsFdtsFsF

dtsFsFdtsFsFdtsFsFmaxss




















 

Let 1= mn , then 
 

.... 01121
2
111 ssssssss m

mmmmmn     
 
From the triangle inquality we have 

 

.),(]
1

1[]...[1

]...[...

1
1

1
101

1
1

2
111

01
1

1
1

111121

txuss

ssssssssss
mn

mmnm

mnmm
nnmmmmmn





















 

 
Since 1<<0 1 , we have 1<)(1 1

mn , then 
 

.|),(|
1 1

1

1 txumaxss Jt

m

mn 



  (43) 

 
But <|),(| 1 txu  , so, as m , then 0 mn ss . We conclude that ns  is a Cauchy 
sequence in ][JC , therefore the series is convergence and the proof is complete.   

 
Theorem 3.3  The maximum absolute truncation error of the series solution 
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),(=),(
0=

txutxu ii


to problem (1) by using MADM is estimated to be 
 

.
1

|),(),(|
1

1

0= 




m

i

m

i

ktxutxumax  (44) 

 
Proof.  From inequality (43), when n , then usn   and 

 
).|)),((||)),((||)),((|(|),(| 0302011 txuFmaxtxuFmaxtxuFmaxTtxumax JtJtJt    

 
Therefore, 

 

).|)),((||)),((||)),((|(
1

),( 030201
1

1 txuFmaxtxuFmaxtxuFmaxTstxu JtJtJt

m

m  





  

Finally the maximum absolute truncation error in the interval J  is obtained by (44). 
 

Theorem 3.4  The solution ),( txun  obtained from the relation (20) using VIM converges to 
the exact solution of the problem (1) when 1<<0 1  and 1<<0 1 . 
 
Proof. 

]),))),((

)),(()),((),(),(([),(=),(

30

2010

1
1

dttxuF

dttxuFdttxuFtxGtxuLtxutxu

n

t
n

t

n

t

ntnn






 
  (45) 

 

]).))),((

)),(()),((),(),(([),(=),(

30

2010

1

dttxuF

dttxuFdttxuFtxGtxuLtxutxu
t

tt

t






 

 (46) 

 
By subtracting relation (45) from (46), 

 

),))],(()),(([

))],(()),(([))],(()),(([
),(),((),(),(=),(),(

330

220110

1
1

dttxuFtxuF

dttxuFtxuFdttxuFtxuF
txutxuLtxutxutxutxu

n

t
n

t

n

t
ntnn













 

 
if we set, ),(),(=),( 11 txutxutxe nnn  , ),(),(=),( txutxutxe nn  , |),(|=|),(| * txemaxtxe ntn  
then since ne  is a decreasing function with respect to t  from the mean value theorem we can 
write, 
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,|),(|)(1(1
|),(|)(),(),(

)]((|),(|),([),(
)))],(()),(([))],(()),(([

))],(()),(([),((),(=),(

*
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11
321

321
11

330220

110
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txeLLLLLTxTetxe
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t
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t

ntnn























 

 
where t0 . Hence, |),(|),( *

11 txetxe nn   . 
Therefore, 

 
.||||= 1111 nnJtnJtn eemaxemaxe     

 
Since 1<<0 1 , then 0ne . So, the series converges and the proof is complete.   
 
Theorem 3.5  The solution ),( txun  obtained from the relation (22) using MVIM for the 
problem (1) converges when 1<<0 1 , 1<<0 1 . 
 
Proof. The Proof is similar to the previous theorem.  
 
Theorem 3.6  The maximum absolute truncation error of the series solution 

),(=),(
0=

txutxu ii


to problem (1) by using VIM is estimated to be 

.|),(|=,
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'
1 txumaxkke
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Proof. 
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n
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Theorem 3.7  If the series solution (34) of problem (1) using HAM convergent then it 
converges to the exact solution of the problem (1). 
 
Proof. We assume:  

)).,((=)),((ˆ

)),,((=)),((ˆ

)),,((=)),((ˆ

),,(=),(

3
0=

3

2
0=
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1
0=

1
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txuFtxuF

txuFtxuF

txuFtxuF
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m
m

m
m

m
m

m
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




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
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Where,  
 

0.=),(lim txum
m 

 

 
We can write, 

 

).,(=)(...)(=)],(),([ 11211
1=

txuuuuuutxutxu nnnmmm

n

m
    (47) 

 
Hence, from (47), 

 
0.=),(lim txun

n 
 (48) 

 
So, using (48) and the definition of the linear operator L , we have 

 

0.=)]],(),([[=)],(),([ 1
1=

1
1=

txutxuLtxutxuL mmm
m

mmm
m









    

 
therefore from (30), we can obtain that, 

 

0.=)),((),(=)],(),([ 11
1=

11
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txutxhHtxutxuL mm
m

mmm
m









    

 
Since 0h  and 0),(1 txH  , we have  
 

0.=)),(( 11
1=

txumm
m





  (49) 

 
By substituting )),(( 11 txumm   into the relation (49) and simplifying it , we have  

.)),((ˆ)),((ˆ)),((ˆ),(),(=

)])(,()(1)),(()),((

)),(([=)),((

3
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dttxuFdttxuFdttxuFtxGtxu

xtxGdttxuFdttxuF

dttxuFtxu

ttt

mm
t

m
t

m
t

m
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m





















  (50) 

  
From (49) and (50), we have 

.)),(3(ˆ)),(2(ˆ)),((ˆ),(=),(
00

1
0

dttxuFdttxuFdttxuFtxGtxu
ttt

   

 
Therefore, ),( txu  must be the exact solution.   
 
Theorem 3.8  The maximum absolute truncation error of the series solution 

),(=),(
0=

txutxu ii


to problem (1) by using HAM is estimated to be 
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.|),(|=,
1 1

'

1

'
1 txumaxkke
n

n 



  

 
Proof.The Proof is similar to the 3.6 theorem 

 
Theorem 3.9  If 1|),(| txum , then the series solution ),(=),(

0=
txutxu ii


 of problem (1) 

converges to the exact solution by using HPM. 
 
Proof. We set, 
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Therefore, 
 

).,(=),(lim txutxun
n 

 

 
 

Theorem 3.10  If 1|),(| txum , then the series solution ),(=),(
0=

txutxu ii


 of problem (1) 
converges to the exact solution by using MHPM. 
 
Proof.The Proof is similar to the previous theorem. 

 
Theorem 3.11  The maximum absolute truncation error of the series solution 

),(=),(
0=

txutxu ii


to problem (1) by using HPM is estimated to be 
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Proof.The Proof is similar to the 3.6 theorem 

 
 

4  Numerical example 
 
In this section, we compute a numerical example which is solved by the ADM, MADM, VIM, 
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MVIM, HPM, MHPM and HAM. The program has been provided with Mathematica 6 
according to the following algorithm where   is a given positive value. 

Algorithm 1:  
Step 1. Set 0n . 
Step 2. Calculate the recursive relations (10) for ADM , (13) for MADM, (34) for HAM, 
(39) for HPM and (42) for MHPM . 
Step 3. If <|| 1 nn uu   then go to step 4, 
else 1 nn  and go to step 2. 
Step 4. Print ),(=),(

0=
txutxu i

n

i  as the approximate of the exact solution. 
 
Algorithm 2:  
Step 1. Set 0n . 
Step 2. Calculate the recursive relations (20) for VIM and (21) for MVIM. 
Step 3. If <|| 1 nn uu   then go to step 4, 
else 1 nn  and go to step 2. 
Step 4. Print ),( txun  as the approximate of the exact solution. 

 
Example 4.1 Consider the Kadomtsev-Petviashvili equation as follows: 

 

0.=),(),(
2
1),()(),( txutxutxutxtxu xxxt   

 
With initial condition: 

 
.=)( xexg  

 
 
Table 1 Numerical results for Example 4.1  
 

 (x,t)     Errors 
  ADM(n=16)  

MADM(n=13) 
 VIM(n=9) MVIM(n=8)  

(0.1,0.15)    0.081436    0.073123    0.050659  0.043416   
(0.2,0.17)   0.082589    0.074356   0.051375   0.044237   
(0.3,0.20)   0.083296    0.075419    0.051842   0.044732   
(0.4,0.23)    0.083746   0.075729   0.052321  0.045144   
(0.5,0.25)    0.084315   0.076348   0.052796  0.045748   
(0.7,0.30)    0.085228   0.076808   0.053225  0.046207   
(0.9,0.35)    0.086708   0.077173   0.053705  0.046875   
(1.0,0.40)    0.087417   0.077783   0.054202  0.047089  
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 (x,t)    Errors 
  HPM(n=9)  MHPM(n=8)  HAM(n=5)  

(0.1,0.15)    0.062156    0.033646   0.022544   
)(0.20,0.17   0.063015    0.034349    0.023154  

(0.3,0.20)    0.063385    0.035172  0.023557   
(0.4,0.23)    0.065317    0.035471   0.024048   
(0.5,0.25)    0.065819    0.036163  0.024829   
(0.7,0.30)    0.066112    0.036372  0.025362   
(0.9,0.35)    0.066443    0.36724  0.026315   
(1.0,0.40)    0.067236    0.037052  0.026759   

 
 
Table 1, shows that, approximate solution of the Kadomtsev-Petviashvili equation is 
convergence with 5 iterations by using the HAM . By comparing the results of Table 1 , we can 
observe that the HAM is more rapid convergence than the ADM, MADM, VIM, MVIM, HPM 
and MHPM. 

 
 

5 Conclusions 
 
The homotopy analysis method has been known as a powerful scheme for solving many 
functional equations such as algebraic equations, ordinary and partial differential equations, 
integral equations and so on. The HAM has been shown to solve effectively, easily and 
accurately a large class of nonlinear problems with approximations converge rapidly to 
accurate the solution. In this work, the HAM has been successfully employed to obtain the 
approximate solution of the Kadomtsev-Petviashvili equation. We showed that the homotopy 
analysis method has more rapid convergence than the ADM, MADM, MVIM, HPM , MHPM 
and VIM. 
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