
International Journal of Applied Operational Research 
Vol. 5, No. 4, pp. 65-76, Autumn 2015 
 
Journal homepage: ijorlu.liau.ac.ir 

 
Creating Full Envelopment in Data Envelopment Analysis with 
Variable Returns to Scale Technology 
 
M. Zand Moghaddam, F. Hosseinzadeh Lotfi 
 
 
 
Received: 3 March 2015 ;         Accepted: 25 July 2015 
 
 
Abstract In this paper, weak defining hyperplanes and the anchor points in DEA, as an 
important subset of the set of extreme efficient points of the Production Possibility Set (PPS), 
are used to construct unobserved DMUs and in the long run to improve the envelopment of all 
observed DMUs. There has been a surge of articles on improving envelopment in recent 
years. What has been done first is in Constant Returns to Scale (CRS) environment for single 
input multiple output cases, and the latter study is in Variable Returns to Scale (VRS) 
environment for multiple input and output cases, but none of them guarantees full 
envelopment. We provide a short summary of what has been done in VRS environments to 
improve envelopment; we then devise an algorithm to create full envelopment of all observed 
DMUs under VRS technology. We illustrate our algorithm using a numerical example. 

 
Keywords: Data Envelopment Analysis, Anchor Points, Unobserved DMUs, Weak Defining 
Hyperplanes, Efficiency. 
 
 
1 Introduction 
 
Data Envelopment Analysis (DEA), introduced by Farrel [1] and Charnes, et al., [2], is linear 
programming based method used to evaluate relative efficiency of a Decision Making Unit 
(DMU) from a set of n DMUs. Based on various production process assumptions, a number 
of different models have been developed. The original DEA model by Charnes et al., [2] 
which assumes Constant Returns to Scale (CRS) was extended by Banker et al., [3] to allow 
for Variable Returns to Scale (VRS) technologies. Under VRS an output efficiency score 
yielded by DEA for a DMU is based on the ratio of the sum of its weighted outputs plus a 
variable for the DMU’s scale of operation to the sum of its weighted input levels. The weights 
are free to be estimated in model in order to maximize the efficiency score of the evaluated 
DMU, only subject to the constrains that all weights should be greater than a minimum value 
of ε, a very small number (non-Archimedian infinitesimal). 

There is a lot of reasons that recognize this near complete weight flexibility in DEA often 
leads to unacceptable results. One reason is that not all the inputs and (or) outputs are given 
sufficient weight in computing the efficiency scores. Clearly, one straightforward way to 
overcome this problem is to raise the lower bound ε on the DEA-weights to a level that is 
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deemed sufficient (see e.g.; Dyson and Thanassoulis [4], Allen et al. [5] and Thanassoulis et 
al. [6]). In the VRS environment weight restricted DEA models lead frequently to 
inappropriate results such as negative efficiency scores and infeasibilities as demonstrated in 
Allen [7] and Estellita Lins et al. [8]. The next study also suggests a new approach for weight 
restrictions that avoids infeasibilities under VRS. However, the model by Estellita Lins et al. 
[8] is nonlinear and does not produce radial efficiency scores. Obviously, these are relevant 
limitations for this approach, because many non-radial models can also avoid unreasonable 
weights to inputs and (or) outputs. Thus, there is a need for an alternative approach for 
capturing value judgments in a VRS environment, which does not require nonlinear models or 
non-radially. 

The latter study by Thanassoulis et al. [9] recommends an approach that utilizes the 
envelopment DEA model in including additional technical and value information in efficiency 
evaluation. In order to improve envelopment the approach incorporates in the assessment the 
Decision Maker’s (DM’s) values or other information about the input output transformation 
process by explicitly modifying the Production Possibility Set (PPS); (see Banker et al. [3]). 
Therefore, this approach perceives the concept of the inclusion of values (value judgments) in 
DEA as that of missing data. In other words, efficient levels of inputs and outputs for 
operating processes which at present are only observed at inefficient levels are to be 
estimated. The approach is only attempting to extend the observed Pareto-efficient frontier, 
rather than alter and extend the observed frontier. 

The approach developed essentially takes forward the ideas in Thanassoulis and Allen 
[10], who demonstrated the equivalence between relative DEA weight restrictions and the 
incorporation of Unobserved DMUs (UDMUs). Those ideas were used in Allen and 
Thanassoulis [11] to create UDMUs and thereby incorporate values in the DEA assessment 
process. However, Allen and Thanassoulis [11] covered the limited single input multiple 
output CRS case. This approach generalizes the method to the multiple input and output VRS 
environment. In the multi-input multi-output case the choice of inputs and (or) output to 
modify and the direction of modification in order to create UDMUs is considerably more 
complex than in the single input multi-output case. Further, the VRS technology makes it 
necessary to reflect the nature of returns to scale when creating UDMUs. Thanassoulis et al. 
[9] address these issues and provide an appropriate heuristic for improving envelopment in 
this more complex setting. The approach has some similarities with the constrained facet 
approaches (see e.g.; Bessent et al. [12], Lang et al. [13], Olesen and Petersen [14]), which 
also operate directly on the PPS instead of weight restrictions. However, the difference from 
constrained facet approaches is that, this approach uses the DM’s preferences to extend the 
PPS. The main idea behind the approach is to extend the Pareto-efficient frontier by adding 
suitably constructed UDMUs in the data set. 

This offers a number of benefits over weights restrictions as far as incorporating values in 
a DEA assessment is concerned. The main advantages and disadvantages of UDMUs in 
comparison to weight restrictions are detailed in Thanassoulis and Allen [10], Allen and 
Thanassoulis [11] and Thanassoulis et al. [9]. Other studies dealing with unobserved DMUs 
include Sowlati and Paradi [15], Jahanshahloo and Soleimani-Damaneh [16] and Diallo et al. 
[17]. Awhile back, UDMUs have been utilized in generalizing weak disposable DEA 
technologies (see Kuosmanen [18], Kuosmanen and Podinovski [19], Podinovski and 
Kuosmanen [20]). However, this approach does not use DM preferences in incorporating 
DMUs, but applies the weak disposable property to construct UDMUs under VRS. 
Incidentally, the proposed approach by Thanassoulis et al. [9] even though extends the Pareto-
efficient frontier and develops envelopment, does not guarantee full envelopment of all 
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DMUs; and it means that after applying the proposed approach, not covered DMUs may still 
exist. To overcome this defect, in this paper we propose another new approach which restricts 
DM’s liberty and guarantees full envelopment of all DMUs by creating some changes in the 
proposed approach by Thanassoulis et al. [9]). 

The rest of the paper is organized as follows. Section 2 provides a summary of what 
Thanassoulis et al. [9] have done to improve envelopment. Section 3 and 4 detail the steps 
which determine UDMUs and provide full envelopment. Section 5 presents an application to 
a set of data to illustrate the approach. Finally the paper concludes and suggests further 
developments of the approach. 
 
 
2 A summary of improving envelopment by creating UDMUs 
 
The proposed general procedure for improving envelopment under multiple inputs and 
outputs in a VRS technology by Thanassoulis et al. [9] can be summarized as follows: 
 

I. Assess the DMUs in the appropriate orientation to determine the Pareto efficient 
DMUs and the envelopment of the inefficient DMUs. If there are non-enveloped 
DMUs go to (II), otherwise stop. 

II. Identify the Anchor DMUs (ADMUs), which are the (extreme) efficient DMUs from 
where the Pareto efficient frontier is to be extended. 

III. For each ADMU, identify which input and (or) output levels of the DMUs need to be 
individually raised or lowered to improve envelopment. 

IV. Construct estimates of Pareto efficient UDMUs by reference to the DM. 
V. Re-assess the DMUs permitting both DMUs and UDMUs to define the efficient 

boundary. 
VI. If all DMUs are fully enveloped or the DM feels a sufficient number of DMUs are 

fully enveloped stop. Otherwise repeat steps (IV) and (V). 
 
The steps above can increase the number of properly enveloped DMUs in the assessment, but 
do not guarantee full envelopment. 
 
 
3 The proposed approach 
 
Our new proposed initiative which guarantees full envelopment under multiple inputs and 
outputs in a VRS technology is as follows: 
 

i. Assess the DMUs in the appropriate orientation to determine the Pareto efficient 
DMUs and the envelopment of the inefficient DMUs. If there are non-enveloped 
DMUs go to (ii), otherwise stop. 

ii. Identify the Anchor DMUs (ADMUs), which are the (extreme) efficient DMUs from 
where the Pareto efficient frontier is to be extended. 

iii. Find the average point on weak hyperplanes by obtaining all of the weak hyperplanes. 
iv. Find a point out of VT by reducing input of the average point for the input orientation 

or increasing output of the average point for the output orientation. 
v. Determine the lowest level of outputs for the input orientation case or the highest level 

of inputs for the output orientation case between inefficient DMUs. 
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vi. Adjust the obtained point in step (iv) by using step (v) to create UDMUs. 
vii. Re-evaluate DMUs in the presence of the created UDMUs to see all DMUs are 

enveloped and full envelopment is achieved. 
 
The sections which follow explain each one of the steps (i) – (vii) above. 
 
Consider the set of N DMUs with m inputs x୧୨, i=1,…,m to produce s different outputs y୰୨, 
r=1,…,s under variable returns to scale and in the input orientation (though a similar 
procedure can be developed for the output orientation Case). The following steps will ensure 
full envelopment of DMUs under multiple inputs and outputs in a VRS technology. 
 
 
3.1 Step (i): Primary assessing of DMUs  
 
We will utilize here the classifications of DMUs in DEA introduced by Charnes et al. [21]. 
For ease of reference, they are summarized here: 
 

 Class E : Extreme efficient DMUs which cannot be expressed using linear 
combinations of other extreme efficient DMUs, determined by the variable returns to 
scale assumptions of the model. 

 Class E: Pareto efficient DMUs which are not class E . 
 Class F: Inefficient DMUs that are on the PPS boundary. 
 Class N E , NE or NF: DEA inefficient DMUs such that their radial projection on the 

PPS boundary constructs a class E , E or F DMU, respectively. It is important to note 
that in the general VRS environment this classification based on projections is affected 
by the orientation used. 

 
By using model (M1), identify the set of Pareto efficient DMUs which are categorized in class 
E and E, weak efficient DMUs which are categorized in class F and also inefficient DMUs 
which are categorized in class N E , NE and NF. Indeed by solving model (M1), Pareto and 
weak efficient frontiers are distinguished. 
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If all DMUs are enveloped stop, otherwise go to the next step. 
 
 
3.2 Step (ii): Identifying the anchor DMUs (ADMUs) 
 
Let  JE  be the set of extreme-efficient DMUs. To identify whether DMU is ADMU, solve 
model (M2): 
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                      (M2) 

 
Where x୧୨ and y୰୨ are as defined in (M1). j0DMU  must meet either one of the following 
conditions to be classed as an ADMU: 
 j0h 1  and at least one iS 0  or m rS 0   in (M2) or 

  (M2) has no feasible solution. 
 
 
3.3 Step (iii): Finding the average point on weak hyperplanes 
 
Obtain all of the weak hyperplanes. Suppose that iH  is a weak hyperplane; put: 
 

i iA {Indexes of all anchor units on the hyperplane H }          (1) 
 
Calculate:  
 

i

i
i

ii ii A

XX 1=
YAY 

          
       (2)  

 
Actually, we obtain the point that is the average point on the weak hyperplane. In Theorem 1, 
we prove that the obtained point is on the weak hyperplane iH . 
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Theorem 3.1. The point 
i

i

X

Y

 
 
 
 

 is on the weak hyperplane iH . 

See Appendix for proof. 
 
 
3.4 Step (iv): Finding a point out of VT   
 
The purpose is to find a point out of VT , so that the weak hyperplanes can be removed to 
assess DMUs. For this, the new point is defined as follow: 
Put: 

ii
m

i i

X -ε1X
=

Y Y

  
  
  

   
                                         (3) 

Note that the point 
i

i

X

Y

 
 
 
 

is a point on the weak hyperplane (weak frontier) which is parallel 

to the output axis; So it is expected that by reducing input, the weak hyperplane is not in VT . 

In Theorem 2, it will be shown that the point 
i

m
i

X -ε1

Y

 
 
 
 

 is out of VT . 

Theorem 3.2. Point 
i

m
i

X -ε1

Y

 
 
 
 

 is out of the weak hyperplane iH , therefore is out of VT . 

See Appendix for proof. 
 
 
3.5 Step (v): Determining the lowest level of outputs 
 
Find the lowest level of similar components of outputs between inefficient DMUs belong to 
class NF that are distinguished by (M1) in the First step, and name the obtained output vector 

minY . 
 

j j ;  DMU class NF   ;    

1 1j

2 2jmin

s sj

y = min{y ; j}

y = min{y ; j}
Y =

y = min{y ; j}

 
 

 
 
 
  


       (4) 
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3.6 Step (vi): Creating UDMUs 
 

At the point 
i

m
i

X -ε1

Y

 
 
 
 

 instead of  
iY , put minY  as follow: 

min

i i
m m

i

X -ε1 X

Y

-ε1=
Y

   
   
   

  
                                      (5) 

 
The obtained point above is a UDMU that by using this, we want to extend the Pareto 
efficient frontier and create full envelopment. 
 
 
3.7 step (vii): Re-evaluating DMUs in the presence of the created UDMUs 
 
As described at third until sixth steps, create a UDMU for each weak hyperplane which 
contains the anchor DMU. Add all created UDMUs to the initial DMUs set, and re-create the 
new set vT . Re-assess the initial DMUs plus the created UDMUs (new vT ) by solving Model 
(M1); and you will see that all DMUs are enveloped and full envelopment is achieved. 

Note that the determination of ε  value is up to the DM. So the DM should choose a value 
for ε , which the created UDMUs do not destroy the Pareto efficiency of anchor DMUs; and 
this means that the returns to scale of created UDMUs has to be consistent with the returns to 
scale of anchor DMUs. For this purpose, it is enough +ε 0 . 
A summary of the foregoing steps is now given, in the form of a heuristic. 
 
 
4 A procedure to guarantee full envelopment in DEA via UDMUs under VRS 
 
Consider a set of N DMUs using m inputs, x୧୨, i=1,…,m to produce s different outputs y୰୨, 
r=1,…,s, where an assumption of variable returns to scale is maintained and the input 
orientation is appropriate for assessing efficiency. The following steps can guarantee full 
envelopment of all DMUs in the assessment. 

i. Apply model (M1) to identify the set of Pareto efficient DMUs which are of class E  
and E, weak efficient DMUs which are of class F and also inefficient DMUs which are 
of class N E , NE and NF as defined by Charnes et al. [21]. If all DMUs are properly 
enveloped stop. Otherwise go to (ii). 

ii. For each *j JE  (i.e. for extreme efficient units) solve model (M2) to determine j0h
as defined in that model. Hence identify the set of ADMUs JA = {j | j0h > 1, and at 

least one is > 0 or sm r > 0, or jDMU  has no feasible solution in (M2)}. 

iii. Obtain all of the weak hyperplanes, for each weak hyperplane iH  by using (1) and (2) 
obtain its average point. 

iv. For each average point on the weak hyperplanes obtained in step (iii), reduce the input 
vector by using (3) to find a point out of VT . 
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v. For all inefficient DMUs belong to class NF that are distinguished by (M1) in the step 

(i), find the output vector 
minY  as shown in (4). 

vi. For each point out of VT  obtained in step (iv), replace its output vector with output 

vector 
minY  determined in step (v) as indicated in (5) to create UDMUs. 

vii. Assess the DMUs using model (M1) but permitting both DMUs and the UDMUs 
created in step (vi) to define the PPS boundary. All DMUs would be properly 
enveloped and full envelopment would be achieved; so stop. 

 
The foregoing heuristic can be readily modified for an output maximization model. The 

next section demonstrates the use of the foregoing process on a real data set. 
 

 
5 Illustration of the use of UDMUs to create full envelopment in DEA 
 
In this section the use of UDMUs to create and guarantee full envelopment will be illustrated 
by applying the procedure developed to a set of 9 DMUs with the input output variables of 
Table 1. 
 
Table 1 Data of inputs and outputs of DMUs 
 

DMUs    D1    D2    D3    D4    D5    D6    D7    D8    D9 
    ࢞૚    26    20    22    15    30    35    34    20    22 
    ࢞૛    20    15    10    12    22    25    24    16    17 
    ࢟૚    15.5    17.2    14.3    14    12    12    12    14.3    13.5 
    ࢟૛    8    5    8    5    3    2    2    10    8 

 
 
5.1 Step (i): The initial evaluation of the DMUs 
 
The initial step of the procedure is to evaluate the DMUs using model (M1) to identify the 
Pareto efficient DMUs and establish whether there is a need to improve the envelopment of 
the DMUs. It was found that DMUs D1, D2, D3, D4 and D8 are of class E , and DMUs D5, 
D6, D7 and D9 are of class NF. This result establishes a need for a procedure to improve the 
envelopment of the inefficient DMUs. 
 
 
5.2 Step (ii): The anchor DMUs of the evaluation 
 
Using model (M2) it was found that 2 of the 5 Pareto efficient DMUs were anchor DMUs. It 
means that DMUs D3 and D4 are anchor DMUs. 
 
 
5.3 Step (iii): The average point on weak hyperplanes 
 
All weak hyperplanes were found by using the proposed algorithm by Davtalab-Olyaie et al. 
[22]. For weak hyperplane 1

1 2H :0.11y -0.06x -0.97 = 0  and the anchor DMU D3 lying on it, 
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the average point 
1

1

X 22,10
14.3,8Y

           

, for weak hyperplane 

1
2

1 2-H :0.06y -0.01x 0.04x -0.16=0  and the anchor DMUs D3 and D4 lying on it, the 

average point 
2

2

X 18.5,11
14.15,6.5Y

           

 and for weak hyperplane 

2
3

1 1-H :0.07y 0.04y 0.05x -0.57=0  and the anchor DMU D4 lying on it, the average 

point 
3

3

X 15,12
14,5Y

           

 were obtained. 

 
 
5.4 Step (iv): The points out of VT   
 
The input vectors of all average points obtained in step (iii) were reduced and the points 

1
m

1

X -ε1 21.99,9.99
14.3,8Y

           
, 

2
m

2

X -ε1 18.49,10.99
14.15,6.5Y

           
 and 

3
m

3

X -ε1 14.99,11.99
14,5Y

           
 

which are out of VT , were obtained. 
 
 
5.5 Step (v): The lowest level of outputs 

For all inefficient DMUs belong to class NF, the output vector min

2
Y

12     
 was found. 

 
5.6 Step (vi): The created UDMUs 
 
By replacing output vectors of points out of VT  obtained in step (iv), with output vector

min

2
Y

12     
, the UDMUs

1
m

min

X -ε1 21.99,9.99
12, 2Y

           
, 

2
m

min

X -ε1 18.49,10.99
12, 2Y

           
 and 

3
m

min

X -ε1 14.99,11.99
12, 2Y

           
 were created. 

 
 
5.7 Step (vii): Evaluation of the DMUs permitting UDMUs to be on the boundary 
 
Finally, the DMUs with the inclusion of the created UDMUs were assessed again in the 
context of model (M1). This was found that all DMUs are fully enveloped and full 
envelopment was achieved. 
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6 Conclusion 
 
This paper has extended the approach developed in Thanassoulis et al. [9] from introducing 
values and improving envelopment in a VRS DEA assessment with multiple inputs and 
outputs to a new approach while also guaranteeing full envelopment. The approach utilizes 
UDMUs created by using certain observed DMUs, identified as ‘Anchor’ DMUs and weak 
defining hyperplanes. 

Creating UDMUs by finding the average points of ADMUs on weak defining 
hyperplanes offers a significant advantage over creating UDMUs by adjusting the input–
output levels of ADMUs; it is guaranteed that applying the proposed approach in this paper 
once, makes full envelopment of all observed DMUs. Moreover, it reduces the number of 
created UDMUs and this means that the amount and complexity of the calculations will be 
less. 

Evidently the difficulty in the approach is to find weak hyperplanes which requires to 
solve two models several times and takes time, however may exist easier methods to find 
weak hyperplanes. Although the one presented here will guarantee full envelopment of all 
DMUs, there may be alternative approaches and extending the method to a new approach 
which is less time consuming is an area for further research. 
 
Appendix 1. 
 
Proof of Theorem 3.1. Suppose that  i

1 tA ,...,A H , and 
 

i t t
0H :U Y - V X - u = 0                                       

If  1
1

1

iX
=

Y
HA

 
 

 
, so 

t t
1 1 0U Y - V X = u  

 

If  2
2

2

iX
=

Y
HA

 
 

 
, so 

t t
2 2 0U Y - V X = u  

 

and similarly if t
t

t

iX
=

Y
HA

 
 

 
, so 

t t
t t 0U Y - V X = u  

 
From sum of the above equations: 
 

t t
1 2 t 1 2 t 0 0U (Y +Y +...+Y ) -V (X +X +...+X )= u +...+ u  

 
The number of u଴s are t. Both sides divided by t makes: 
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t t1 t 1 t
0

Y +...+Y X +...+XU - V = u
t t

   
   
   

 

as a result, we will have: 
 

1 t
i

1 t

X +...+X
t H

Y +...+Y
t

 
 

 
 
 
 

 

And it means: 
i

i
i

X
H

Y

 
 
 
 

   □ 

 
Proof of Theorem 3.2. We have:  

i ii i i
0U Y -V X = u  

Put:  
i i

mX = X -ε1  
Will have: 

i ii i
m

i ii i i
m

i i i
0 m 0

U Y -V (X -ε1 )=

U Y -V X εV 1 =

u εV 1 u 

  

 

So point 
i

m
i

X -ε1

Y

 
 
 
 

 is out of the weak hyperplane iH and so is out of VT . □ 
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