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Abstract The performances of decision-making units (DMUs) can be evaluated from two different
points of view optimistic and pessimistic and accordingly, two different efficiencies can be calculated
for each DMU: the best relative efficiency and the worst relative efficiency. In the conventional
methods of data envelopment analysis (DEA), only the best relative efficiency is evaluated. It is
argued here that both efficiencies must be considered simultaneously, and any approach that considers
only one of them will be biased. In this paper, it is proposed that to integrate both efficiencies in the
form of an interval evaluates the overall performance of each DMU. To this end, a virtual DMU is
used called the ideal DMU. The new DEA models with upper and lower bounds on efficiency are
called the bounded DEA models. A numerical example is presented to illustrate the application of the
proposed DEA models.

Keywords Data Envelopment Analysis (DEA), Optimistic and Pessimistic Efficiencies, Bounded
DEA Models, Efficiency Interval.

1 Introduction

It has been known that the performances of decision-making units (DMUs) can be measured
from different points of view. Data envelopment analysis (DEA), developed by Charnes et al.
[1], measures the performances of DMUs from the optimistic point of view. The
corresponding efficiencies are referred to as the best relative efficiencies or optimistic
efficiencies, which are restricted to be greater than or equal to one. If a DMU is evaluated to
have the best relative efficiency of one, then it is said to be DEA efficient or optimistic
efficient; otherwise, it is said to be optimistic non-efficient. Optimistic efficient DMUs are
usually thought to perform better than optimistic non-efficient DMUs.

On the other hand, the performances of DMUs can also be measured from the pessimistic
point of view. The efficiencies measured from the pessimistic viewpoint may be referred to as
the worst relative efficiencies or pessimistic efficiencies, which are measured within the range
of less than or equal to one. Contrary to the best relative efficiencies that determine an
efficiency frontier, the worst relative efficiencies of DMUs define an inefficiency frontier. If a
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DMU is evaluated to have the worst relative efficiency of one, then it is said to be pessimistic
inefficient; otherwise, it is said to be pessimistic non-inefficient. Pessimistic inefficient
DMUs are usually thought to perform worse than pessimistic non-inefficient DMUs.

From the above analyses we can see that efficiency is a relative measure. It can be
measured either within the range of less than or equal to one, or within the range of greater
than or equal to one. When measured within different ranges, it has different meanings. The
resultant assessment conclusions are usually different. Any assessment using only one type of
efficiency is obviously one-sided. Ideally, both types of efficiencies should be used at the
same time to assess the performances of DMU .

In order to have an overall assessment of the performance of each DMU, we must
consider both optimistic and pessimistic efficiencies simultaneously. Entani et al. [2] studied
the performances of DMUs from both optimistic and pessimistic points of view. In their DEA
models, optimistic and pessimistic efficiencies are used to form an interval. Their idea was
that the efficiency of a DMU is the interval between the optimistic and the pessimistic values.
However, their DEA model for computation of the optimistic efficiency of each DMU has a
major drawback; namely, it does not take into account some of the input and output data.
Their method practically considers the data of only one input and one output for the DMU
under evaluation and ignores the rest of the input and output data. Furthermore, their model is
not able to identify DEA-efficient DMUs adequately.

Wang and Luo [3] measure the optimistic and the pessimistic efficiencies of DMUs by
introducing two virtual DMUs: ideal DMU (IDMU) and anti-ideal DMU, and integrate the
two efficiencies into a relative closeness index, which servers as the basis for ranking DMUs.
But in most cases, their models use fixed weights for all DMU .

Wang and Yang [4] proposed a bounded DEA models for precise data. The bounded
DEA models makes the most of all input and output information to measure both the best and
the worst possible relative efficiencies of each DMU by introducing a virtual anti-ideal DMU,
which consumes the most inputs only to produce the least outputs. It can therefore identify
both the efficiency and inefficiency frontiers.

In this paper, we reconsider the problem of performance measurement. We measure the
efficiencies of DMUs within the range of an interval so that the worst and the best relative
efficiencies can be measured within a unified DEA model framework. In order to determine
the range of interval efficiency, a virtual IDMU is introduced, whose performance is
definitely the best among all the DMUs. So, its worst relative efficiency can be utilized as the
constraint on the lower bound efficiencies of DMUs. A new DEA model with the upper and
lower bounds on efficiencies is thus developed to compute the worst and the best relative
efficiencies of each DMU, which constitute an interval to give an overall assessment of the
performance of each DMU.

The rest of this article is organized as follows. Section 2 introduces basic DEA models
for measurement of optimistic and pessimistic efficiencies of DMUs. Section 3 initially
discusses Entani et al.’s [2] models and then presents the bounded DEA models. Section 4
compares the bounded DEA models and Entani et al.’s [2] models using a numerical example.
Conclusions are set forth in Section 5.

2 DEA models for measuring the best and the worst relative efficiencies
2.1 DEA model for measuring the best relative efficiencies of DMUs

Assume that we want to evaluate n DMUs, each DMU consuming different amounts of m
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inputs to produce r different outputs. In other words, DMU; ( j =1,...,n) consumes the
amounts x; (1 =1,...,m ) of inputs and produces the amounts y,; (» =1,...,s) of outputs, all of

which are known and non-negative, and each DMU has at least one positive input and one
positive output.
In order to measure the efficiency of DMU, relative to other DMUs, Charnes et al. [1]

developed the following CCR model, which measures the best relative efficiency of DMUs in
the output-oriented mode:

m
ZViXio

Min 0, =il

S

DUy,
r=1

st. 6. =2=L—>1 j=L...,n, (1)

Where DMU, denotes the DMU under evaluation; v, (i=1,...,m) and u, (r=1,...,5)

are decision variables; and ¢ is the non-Archimedean infinitesimal. Using Charnes and
Cooper’s [5] transformation, the above fractional programming model can be converted into
the following linear programming (LP) model:

m
Min 6, :ZViXio
i=1

m S

s.t. ZViXij_zurYerO’ j=1...,n,
r=1

i=1

i uryro = 1’
r=1

u,v.2g, r=1L...,s 1=1....m

2)

If there exists a set of positive weights that makes &, =1, then DMU, is referred to be

DEA efficient; otherwise, we call it to be DEA non-efficient rather than DEA inefficient
because DEA non-efficient does not necessarily mean DEA inefficient. In fact, DEA efficient
and DEA inefficient are only two extreme cases. For n different DMUs, there is a total
number of N LP models to be solved. Accordingly, there are n different sets of weights,
which are the basis to calculate the cross-efficiency matrix [6].
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2.2 DEA model for measuring the worst relative efficiencies of DMUs

Efficiency is a relative measure and can be measured within different ranges. The CCR model
measures the optimistic efficiency of each DMU by minimization within the range of greater
than or equal to one. If the efficiency of a DMU is measured by maximization within the
range of less than or equal to one, then we have the so-called pessimistic efficiency or the
worst relative efficiency. The pessimistic efficiency of DMU_ can be measured by the

following pessimistic DEA model [7, 8]:

m
Z ViXio

Max ¢, =—

s
Z ur yro
r=l1

m

Zvixu

st. ¢, =F——<1, j=L...,n, 3)

S

Zuryrj
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u,v,2g, r=1L...,s, 1=1...,m

Which can be further transformed into the following equivalent LP model:

m
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i=1

m S

s.t. Zvixij—ZuryerO, j=1...n,
r=1

i=1

i 1'lryro = 1’
r=1

u,v.2g, r=1L...,s 1=1....m

(4)

Efficiencies determined by the above LP model (4) are referred to as the worst relative
efficiencies. Contrary to the CCR model (2) that determines an efficiency frontier for n
DMUs, model (4) determines an inefficiency frontier for them. We refer to those DMUs lying
on the inefficiency frontier to be DEA inefficient, while those not lying on the inefficiency
frontier to be DEA non-inefficient.

Since the best relative efficiencies measure the best performances of DMUs, while the
worst relative efficiencies measure their worst performances, such two types of relative
efficiencies usually lead to two distinctive assessment conclusions. Any assessment using
only one type of efficiency is obviously not all-sided. Therefore, there is a clear need to
combine both types of relative efficiencies and give an overall measurement and assessment
of the performance of each DMU.
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3 Bounded DEA models for measuring interval efficiencies of DMUs
3.1 Review of existing work

Since the worst and the best relative efficiencies are measured within different ranges, they
are incomparable. Therefore, they cannot be directly used to form an efficiency interval for
each DMU. In order to be able to generate an interval efficiency assessment for each DMU,
Entani et al. [2] constructed the following upper and lower bounds mathematical
programming model for DMU , :

m s
Zvi Xio / Zuryro
r=1

Max/Min 6=—-1"=1 — -
maX{ZViXij / Zuryq} ®)
I Ga =1
S.t. u,v, 20, r=L...s, i=L...m

Where the upper bound model was further transformed into the model below, which is
equivalent to the standard model (3) and can be solved through model (4):

Max

"2

U m
60 Vi
=1
m
S.t. max {Z \%
j i=1

u,v.20, r=1...,s, 1=1,....m.

r=1

Xij ZuryU} = 1’ (6)

r=1

s
Xio Zuryro
i

While the lower bound model was converted into the following model, which cannot be
replaced with an equivalent LP problem:

Min ecl; = ivixio/iurYro
i=1 r=1
st max {i Vixij/zs: uryrj} =1, @)
J i=1 =1

u,v, 20, r=1,...,s, 1=1L...,m.

m

By assuming that Z;l vixl.j/z;1 u.y, =1 for each DEA inefficient unit (pessimistic

inefficient DMU), Entani et al. [2] divided the above model (7) into the following ¢ sub-
optimization problems (J,,...,J,) where ¢ is the number of pessimistic inefficient DMUs

and J,,...,J, are the DMUs which are pessimistic inefficient:


https://ijaor.ir/article-1-47-fa.html

[ Downloaded from ijaor.ir on 2026-02-17 ]

54

H. Azizi, R. Jahed / IJAOR Vol. 1, No. 1, 49-63, Summer 2011 (Serial #1)

m S
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i=1
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Which can be further simplified as the ¢/ LP models below:

m
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i=1

t. S =1,
St Uy, ©
D Vi~ 20y, =0,
i=1 r=1
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Let 6?;* be the optimum objective function value of the above LP model (9). It is obvious

that when j=o0, 19;* =1. So, the lower bound efficiency of DMU, was finally determined

by

L* . L*
0, =1/\1\§I¢})n{90j} (10)

where a Ab=min{a,b}. Accordingly, the efficiency interval for DMU, is denoted as

[07,07"], where 8" is the optimum objective function value of the upper bound model (6).

Carefully analyzing models (7)-(9), the following drawbacks have been found:

1.

One important feature of measuring the best relative efficiencies of DMUs is to
identify DEA efficient DMUs, which perform the best among all DMUs from the
optimistic point of view, and to determine an efficiency frontier so that the decision
maker or assessor knows which DMUs are DEA efficient and which DMUs are not.
But models (7)-(9) fail to do so. They can identify only one DMU with the smallest
lower bound efficiency and not all DEA efficient DMUs. Accordingly, they cannot
determine the efficiency frontier. So, much information useful to the decision maker
or assessor was lost.

Models (8)-(9) use only one DMU, i.e. DMU, as the reference set to compute the

lower bound efficiency of DMU, . So, model (9) has only two constraint conditions,

which leads to only one input and one output weights to be nonzero and all the other
input and output weights to be zero. That is to say, only one input and one output data
of DMU, were effectively used and all the other input and output data were ignored

when computing its lower bound efficiency. This is obviously unreasonable and
unacceptable.

Evidently, the model (5) cannot reasonably measure the best relative efficiencies of
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DMUs and cannot determine the efficiency frontier. So, in what follows, we will develop a
new DEA model with the constraint of the upper and lower bounds on efficiency. For
convenience and simplicity, we refer to it as a bounded DEA model. The Bounded DEA
model measures the performances of DMUs within the range of an interval and thus can
effectively make the most of all the input and output data to measure both the best and the
worst relative efficiencies of DMUE .

3.2 Bounded DEA models for crisp data

In order to reasonably measure the interval efficiencies of DMUs, we first introduce the
concept of IDMU.

Definition 1. An IDMU is a virtual DMU, which can use the least inputs to generate the
most outputs.

According to the above definition, we denote by x™ (i =1,...,m) and y™ (r=1,...,5)

i

n

the inputs and outputs of the IDMU, respectively, where x™ is the minimum of the i-th input

and y™ the maximum of the r-th output. They are determined by the following formulae:
x;"i“ =Min{x;}, i=L...,m,
J

max

y, =Max{y,}, r=1...s.
J

Since the IDMU utilizes the least inputs to produce the most outputs, its performance is
without doubt the best among all the DMUs. So, its efficiency should be the smallest at any
circumstance.

Let ¢,,,,, be the worst relative efficiency of the IDMU. Then it can be determined by
using the following fractional programming model [8]:

m .
min
Z ViX;
i=1

Max @y, =5

S

max
2 U,
r=1
m
Z ViX;;
==L <

= <1, j=1...n, (11)
ZurYrj
r=1

u,v,2g, r=1..5s 1i=1...,m.

st. o

which can be solved through the following LP model:


https://ijaor.ir/article-1-47-fa.html

[ Downloaded from ijaor.ir on 2026-02-17 ]

56 H. Azizi, R. Jahed / IJAOR Vol. 1, No. 1, 49-63, Summer 2011 (Serial #1)

m
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s

max __
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r=1

u,v.2g, r=1L...,s, 1=1,...,m

(12)

Where ¢ is the non-Archimedean infinitesimal. After ¢,,,,, is determined, we know that
the efficiencies of all the DMUSs cannot be less than it. Therefore, we can measure the
efficiencies of DMUs within the range of interval[¢,,,,,,1]. The following pair of fractional
programming models reflects this idea [4]:

m
zvixio

Max/Min ¢, =-———

2 U Y
r=1

m

Zvixﬁ

St @y < <1, j=1...,n, (13)

S

Zuryrj
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u,v.2g, r=1L..,s, 1i=1...,m
which can be equivalently transformed into the following pair of LP models:
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r=1

i NgE
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T

Both models (13) and (14) are called bounded DEA models. Let ¢”" and ¢ be the
maximum and the minimum of the above objective function, respectively. Then, they form an
efficiency interval, denoted by [¢"",4” ], which measures the worst and the best relative
efficiencies of DMU  and its efficiency range. Repeating the above solution process for each
DMU, we can obtain both the worst and the best relative efficiencies of all the DMUs and
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their efficiency intervals [¢;",¢]"] (j =1,...,n).
About the interval efficiency, [¢"",4" "], we have the following definitions:

Definition 2. DMU, is said to be DEA inefficient if and only if ¢”" =1, otherwise it is
said to be DEA non-inefficient.

Definition 3. DMU, is said to be DEA efficient if and only if ¢"" = ¢,,,,,, , otherwise it
1s said to be DEA non-efficient.

Definition 4. DMU, is said to be DEA unspecified if and only if it is neither DEA

efficient nor DEA inefficient.

Definition 5. DMU | is said to be DEA peculiar if and only if it is both DEA efficient
and DEA inefficient.

All the DEA efficient DMUs determine an efficient production frontier, while all the
DEA inefficient DMUs together define an inefficient production frontier called the
inefficiency frontier. For those DEA unspecified units, they are always enveloped by both the
efficiency and the inefficiency frontiers. Note that some DMU(s) may be both DEA
inefficient and DEA efficient. Such DMUs have the widest efficiency interval [¢,,,,,,1].

Their evaluations in fact contain the biggest uncertainty [8].

3.3 Bounded DEA models with preference information on weights

Traditional DEA approach often uses so-called assurance region approach or cone-ratio
method to restrict factor weights u (7 =1,...,5) and/or v,(i =1,...,m). As a matter of fact,
these two approaches are also applicable to the bounded DEA models (13) and (14). Here we
consider how to incorporate the decision maker or the assessor’s preference information on
input and output weights into the bounded DEA models [4].

Since u, (r=1,...,s) and v, (i=1,...,m) are factor weights with different dimensions,
they are usually incomparable. To take into account the decision maker or the assessor’s
preference information, we first carry out scale transformation to eliminate the dimension for
each output and input factor.

Let
Fo=—20 =Ml s j=ln, (15)
max{y,} ¥
Yy Yij =1 - = 16
X; ——, i=L...,m; j=L...,n (16)

 max {x;} - X,
j
The scale-transformed input and output data are of no dimensions and are all within the
range of [0, 1]. Since DEA model has the property of unit-invariance, the use of scale

transformation to input and output data does not change the efficiencies of DMUs. Therefore,
we have
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m

m
Z vixio v ixio
_ =l

0= —— =1 (17)
Zuryro leryro
r=1 r=1

where U, (r=1,...,s) and v, (i =1,...,m) are the factor weights corresponding to the scale-

transformed output and input data. They have no dimensions and are thus comparable. They
can be utilized to express the decision maker or assessor’s preference on outputs and inputs.
According to the relative importance between outputs and inputs, the decision maker or
assessor may provide various types of preference information on outputs and inputs such as
i, >, , v, 2V, , U, =i,V =V,,a<i, [i, <B,y<V, [V, <5, and so on. Substituting

3 3

(15) and (16) into (17), we have

m m

m
zvi'xio z";ifio Z(Vi/ximax)xio
i=1

6 == =1 = =l (18)

o K - N S
~ ~ ~ max
Zuryro zuryro Z (ur /yr )ym
r=1 r=1 r=1

from which we know that
u, =u,y™, r=1..,s, (19)
vo=vx o, i=1,...,m. (20)
These are two very important formulae, which show that the factor weights u,
(r=1...,5)and v, (i =1,...,m) multiplied by the maxima of output and input data can be

used to express the decision maker or the assessor’s preference. For example, the decision
maker preference information mentioned above can be equivalently expressed as

max max
=v, X,

i, 7y

max max max max max __ max
urlyr] 2 Z/lrz.yrz > Vi ‘x'l 2 viz xiz 2 U,}y,} - ur4yr4 > Vi X

i iy iy

max max max max
asu,y, /ursyr6 <P, ysv.x /viéx[ﬁ <o.

Such preference information on factor weights can be easily incorporated into the
bounded DEA models.
Let

max max max max max max
%:{u :(ur) url.yrl Zurzyrz ’ur3yr3 :ur4yr4 ’asursyrs /ur(,yr() Sﬂ} (21)

max max max max max max
%‘ = {V = (Vi )‘ Vi] xi] 2 viz xfz Vi, X, =V X 4 < vis xiS /viﬁ xiﬁ < 5} (22)

> T, iy

Then the bounded DEA models with the preference information on weights can be
expressed as follows:
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_ min
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4 A numerical example

59

(23)

24)

We now examine a numerical example using the bounded DEA model to illustrate its

application in real-world performance measurement.

Consider a performance-measurement problem with ten DMUs, each DMU with one
input and two outputs. The data set is taken from Entani et al. [2] and shown in Table 1,

where all inputs are normalized to one for simplicity.

Table 1 Data for 10 DMUs with one input and two outputs

DMU Input QOutputl Output?2
A 1 1 8
B 1 2 3
C 1 2 6
D 1 3 3
E 1 3 7
F 1 4 2
G 1 4 5
H 1 5 2
1 1 6 2
J 1 7 1

IDMU 1 7 8
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The best and the worst relative efficiencies of each DMU are calculated by using models
(2) and (4), respectively, and the results are recorded in the second and third columns of Table

2. The non-Archimedean infinitesimal is set to be £ =107"°.

Table 2 Interval efficiencies and relative efficiencies of the 10 DMUs

Interval efficiency

Optimistic Pessimistic

DMU efficiency efficiency Bounded DEA models Entani et al.’s DEA
models
A 1.0000 1.0000 [0.3478, 1.0000] [0.1250, 1.0000]
B 1.9167 1.0000 [0.6666, 1.0000] [0.3333, 1.0000]
C 1.2143 0.8125 [0.4223, 0.8125] [0.1667, 0.8125]
D 1.5333 0.8889 [0.5333, 0.8889] [0.3333, 0.8889]
E 1.0000 0.5909 [0.3478, 0.5909] [0.1429, 0.5909]
F 1.4375 1.0000 [0.5000, 1.0000] [0.2500, 1.0000]
G 1.0455 0.5714 [0.3636, 0.5714] [0.2000, 0.5714]
H 1.2105 0.9091 [0.4210, 0.9091] [0.2000, 0.9091]
I 1.0455 0.8333 [0.3636, 0.8333] [0.1667, 0.8333]
J 1.0000 1.0000 [0.3478, 1.0000] [0.1429, 1.0000]

From the angle of the best relative efficiency, DMU,, DMU, and DMU, are all

evaluated to be DEA efficient. They together determine an efficiency frontier, which is shown
in Fig.1. Their performances are usually thought to be better than any other DMUs that are
evaluated to be DEA non-efficient. The performances of those DEA non-efficient DMUs are
rated to be DMU, - DMU, - DMU, -~ DMU_. -~ DMU,, = DMU, ~ DMU , where the

symbol ‘~’ means ‘be indifferent to’, while the symbol ‘>’ represents ‘performs worse than’.
However, when the DMUs are evaluated from the viewpoint of the worst relative
efficiencies, DMU ,, DMU,, DMU, and DMU, are all evaluated to be DEA inefficient.

They together define an inefficiency frontier, which is also shown in Fig.l. Their
performances are usually thought to be worse than any other DMUSs that are evaluated to be
DEA non-inefficient. The performances of those DEA non-inefficient DMUSs are rated to be
DMU,, = DMU,, -~ DMU, - DMU . -~ DMU , = DMU. .

The above assessments are based on different points of view and may therefore be
different. For example, for DMU , and DMU , , when they are evaluated from the optimistic

point of view, they are evaluated to be optimistic efficient, which means they perform better
than any other DMUs. However, when they are evaluated from the pessimistic point of view,
they are both evaluated to be pessimistic inefficient, which means they perform worse than
any other DMUs. Such two assessment results are obviously in conflict with each other. Any
assessment conclusion considering only one point of view is apparently one-sided, unrealistic,
and unconvincing.

In order to give an overall assessment of each DMU from both the optimistic and
pessimistic points of view, Entani et al. [2] used model (5) developed by themselves to
measure the interval efficiency of each DMU. The results are reported in the fourth column of
Table 2, from which can be seen very clearly that their model only successfully identified one
DEA efficient DMU, i.e. DMU ,, which has the smallest lower bound efficiency, but failed to

identify the other two DEA efficient DMUs. So, the efficient production frontier cannot be
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determined by their approach.
Since there are four DMUs, 1.e. DMU ,, DMU,, DMU,., and DMU, that are identified

to be DEA inefficient, in order to determine the lower bound efficiencies of DMUs, four LP
models need to be solved for each DMU. Take DMU , for example. In order to calculate its
lower bound efficiency, the following four LP models need to be solved:

(LP): 0%, =Min v,

u, +8u, =1,

s.t. {v,—(u, +8u,)=0,
u,u,,v, 0.

(LP2): 0%, =Min v,

u, +8u, =1,
st. {v,—(2u,+3u,)=0,
u,u,,v, 0.
(LP3): 0}, =Min v,
u, +8u, =1,

st. 3v,—(4u,+2u,)=0,

u,u,,v, 0.
(LP4): 0% =Min v,
u, +8u, =1,
st. 3v,—(7u,+u,)=0,

u,u,,v, =0.

Each of the above four LP models keeps only one of four DEA inefficient DMUs
continuing to be DEA inefficient. The solutions to the above four LP models are as follows:

0 =lLu =Lu, =0 ,v, =1,
0. =3/8u =0,u,=1/8,v, =3/8,
O =1/4,u; =0, u, =1/8, v, =1/4,
0 =1/8,u; =0, u, =1/8, v, =1/8.
So, the final lower bound efficiency of DMU , is determined by
0. =min{l,3/8,1/4,1/8} =0.1250
From the above four sets of input and output weights, it can be seen that only one output

(either output 1 or output 2) is effectively used in the computation of lower bound efficiency.
Special attention has been paid to the second set of factor weights, i.e.

u, =0,u, =1/8,v, =3/8 , from which we have the following efficiencies for DMU,, ,
DMU,,, DMU,,and DMU,, :
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6.=6,=60,=3/2,60,=3
They are all greater than one. Such results obviously contradict the assumption that
max{) " vx;/ > u,y,}=1.So, Entani et al.’s [2] solution approach is in fact defective.
J ! "=

=1 7y

As a contrast, we now utilize the bounded DEA model (14) developed in this paper to
reevaluate the problem. To do so, we first define the IDMU, which is shown in the last row of
Table 1. Its worst relative efficiency is found to be ¢,,,,, =0.3478 by running model (12).
Running model (14) for each DMU, we get the interval efficiencies of ten DMUs, which are
presented in the last column of Table 2, from which it can be seen very clearly that bounded
DEA model not only identify the four DEA inefficient DMUs correctly, but also identify the
three DEA efficient DMUs fully. The identified DEA efficient DMUs are DMU ,, DMU,
and DMU,. DMU ,, DMU,, DMU,. and DMU, are the four identified DEA inefficient

DMUs. Such assessment results are fully consistent with the results obtained by using the
traditional CCR model (2) and the worst relative efficiency model (4).

Efficient Frontier

output2/input
i
T

- ~

outputl/input

Fig. 1 Efficient and inefficient frontiers for the example

Although DMU ,, DMU,, DMU, and DMU, are all evaluated to be DEA inefficient,

due to the differences in their lower bound efficiencies, their performances are in fact not the
same. Through comparing their lower bound efficiencies, we find that
DMU, -~ DMU, -~ DMU , ~ DMU, . As such, DMU ,, DMU, and DMU , are all rated to
be DEA efficient, due to the differences in their upper bound efficiencies, their performances
are not the same either. Through comparing their upper bound efficiencies, we may arrive at
the conclusion that DMU , ~ DMU, = DMU . The remaining five DMUs belong to DEA

unspecified units. They are all enveloped by the efficient and inefficient production frontiers.
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In this example, both DMU , and DMU , are evaluated to be DEA inefficient and DEA

efficient. This phenomenon shows that the two different production frontiers simultaneously
pass through these two specific DMUs (see Fig.1). Usually, DEA efficient units perform well,
but this does not mean each DEA efficient unit to be the best. As such, DEA inefficient units
usually perform poor, but not every DEA inefficient unit performs the worst. So, when a
DMU is both DEA efficient and DEA inefficient, it is likely to mean that the DMU is neither
the best nor the worst.

5 Conclusions

Performances of DMUs can be evaluated from different perspectives. Accordingly, the results
of such evaluations are often confusing and even contradictory. It is therefore an undeniable
necessity to integrate different measures in order to obtain an overall assessment of the
performance of each DMU. In this paper, we presented bounded DEA models for
measurement of the overall performance of DMUs. It was shown that bounded DEA models
have significant advantages over current methods for evaluation of DMUs.

Compared with Entani et al.’s [2] model, the bounded DEA model developed in this
paper has some attractive advantages. First of all, it can identify DEA efficient and inefficient
DMUs correctly and fully. DEA efficient DMUs form an efficiency frontier, while DEA
inefficient DMUs define an inefficiency frontier. All the DEA unspecified DMUs are
enveloped by both frontiers. Next, bounded DEA models can make the most of all input and
output data in the process of calculating both the upper and lower bound efficiencies of each
DMU. So, both the upper and lower bound efficiencies are reasonably determined. Last but
not least, the bounded DEA model only needs to solve (2n+1) LP problems. One is solved to

determine the worst relative efficiency of the IDMU. The other 2n LP problems are solved to
compute the upper and lower bounds efficiencies of n DMUs, respectively. The
computational burden is substantially reduced.
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