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Abstract Data envelopment analysis (DEA) is a mathematical programming method in Operations
Research that can be used to distinguish between efficient and inefficient decision making units
(DMUs). However, the conventional DEA models do not have the ability to rank the efficient DMUs.
This article suggests bootstrapping method for ranking measures of technical efficiency as calculated
via non-radial models of DEA and a numerical example is used to illustrate the method.
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1 Introduction

DEA is a nonparametric linear programming method used for determining the efficiency of a set of
companies as compared to the best practice frontier. It can be employed to analyze organizations. The
application of the method in the transport sector is wide-spread, especially in the evaluation of
airports, ports, railways and urban transport companies [10]. The aim of the present article is ranking
decision making units (DMUs) in non-radial models. As is well known, DEA assigns the efficiency
value of one to the DMUs which are strongly or weakly efficient. All the DMUs lying on the
efficiency frontier are considered efficient and thus there might be several units with an efficiency
value of unity. To be able to distinguish the performance of these units, numerous ranking methods
have been developed since the introduction of the DEA technique. It must be noted that several of the
solutions found in the literature are not anymore distinct measures that can easily be categorized into
one or the other group of applications, the approaches frequently overlap. Hence, the aim was to give a
clear and concise picture of the models at hand and list them below the heading which is the most
revealing as to the content of the method. More recently, bootstrapping method in radial model have
been studied by Ebadi and Jahanshahloo [4].

This article shows how bootstrapping techniques can be used to ranking the efficiency scores
produced by non-radial model. The bootstrap is a nonparametric approach to statistical inference.
Alternatively, parametric or semi-parametric methods could be used to ranking efficient units. The
bootstrap was chosen because, like the linear programming approach itself, it is nonparametric and
therefore does not impose any structure on the shape of the efficiency distributions. The article
proceeds as follows. First, the non-radial model approach to efficiency measurement is outlined. Our
implementation of the bootstrap to establish statistical properties of the efficiency measure is then
described. We then offer an illustration of this method by applying it to 74 high schools.

* Corresponding Author. (0<)
E-mail: said_ebadisharafabad@yahoo.com (S. Ebadi)

S. Ebadi
Department of Mathematics, Ardabil branch, Islamic Azad University, Ardabil, Iran.


https://ijaor.ir/article-1-473-fa.html

[ Downloaded from ijaor.ir on 2026-02-18 ]

2 S. Ebadi / IJAOR Vol. 5, No. 2, 95-100, Spring 2015 (Serial #16)

2 Background

DEA provides a measure of the efficiency of a DMU relative to other such units, producing the same
outputs with the same inputs. The units to be compared may be enterprisers, banks, schools, hospitals,
etc.[3]. DEA is related to the concept of technical efficiency and can be considered as a generalization
of efficiency measure.

Assume that there is a sample of n DMUs, each producing an s-dimensional row vector of outputs
y, from an m-dimensional row vector of inputs x. Technology governs the transformation of inputs
into outputs; the reference technology relative to which efficiency is assessed is given by the input

requirement set L(y)={x : x canproduce y}. Farrell's [6] input-based measure of technical efficiency
for each observation t=1,...,n is given by:

TE, (x,,»,)=min{0, :0,x €L(y,)} (1)
that is, ¢ DMU's observed input vector (x;) is scalar (0<¢ <1) until it is still just able to produce the

observed level of output (y;). The solution, 7E,=6," , gives the proportion of the /" DMU's actual
input vector that is technologically necessary to produce its observed output vector given the best
practice technology as revealed by the observed data. The vector x,"=6x, would give the technically
efficient (optimal) input vector for the " DMU.
One way to calculate this measure of technical efficiency is by the following linear programming
problem once for each DMUy ,t=1,...n :
min Gt
st: AY 2y

AX <0.x; (2)

elA=1
220

Where Y is the n by s matrix of the observed outputs of all DMUs, X is the n by m matrix of the
observed inputs for all DMUs, and 1 is a n-dimensional row vector of weights that forms convex
combination of observed DMUs relative to which the subject DMU's efficiency is evaluated. The
constraint in this problem simply describe the input requirement set as given by the observed data.

In basic models of DEA, we distinguish between input-oriented and output-oriented models. In other
model, we combine both orientations in a single model, called Additive model. The Additive [2]
model is presented as follows:

max Gtzes_ test
st: AY —s+=y ¢
AX +s =xy 3)
eA=1
220, 5 . * >0
Note that a DMU's efficiency is a relative measure. It compares a DMU's performance to the best
practice performance implicit in the observed input-output combinations. If different input-output

combinations were observed, a DMU's efficiency score would likely change. This idea is the bootstrap
performed below.
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3 The bootstrap

The essence of bootstrapping is to use computational power as a substitute for theoretical analysis. In
this method, artificial, or pseudo-samples are drawn from the original data; the statistic is recalculated
on the basis of each pseudo-sample; the resulting bootstrapped measures are then used to construct a
sampling distribution for the statistic of interest. Note that in order for the bootstrap to work, the
empirical distribution of the sample must be a good representation of the underlying population
distribution that generated the sample in first place [5].

We use the efficiency scores calculated from the original data to form pseudo-samples of artificial
data. Each artificial data set is similar to the original data set in that both follow the same distributions
of inefficiency; this assures that the levels of performance within the bootstrapped results are within
the realm of observed behavior.

The efficiency measures being considered in this article are input-based measures; the bootstrap is
performed over the original efficiency scores. For this reason only the inputs are adjusted in the
formation of the pseud-samples. The data in the pseudo-samples thus consist of the original output
level for all #» DMUs, the original input data for the DMU whose efficiency is being calculated, and
adjusted input data for the remaining n-1 DMUs. After forming a pseudo-sample, the efficiency of a
DMU's original input vector is then assessed relative to the technology implicit in it. Recalculating a
DMU's efficiency relative to a large number of pseudo-samples generates a sampling distribution for
the efficiency score.

To perform our analysis, we modify a form of the bootstrap that is commonly used in the analysis
of regression equations. In this case we re-sample, with replacement, n-1 times from a uniform

distribution over the set of original efficiency scores, m "=y ....0, }, produced by solving equation (3)
once for each observation in the original data set. A set of pseudo-efficiency score, M b ={9f’ 92 s
9? em”™, j=1,...,n-1 are then used to construct a new reference technology relative to which efficiency

is recalculated. Note that only n-1 pseudo-efficiency scores are drawn; we hold the efficiency of the
DMU being assessed constant at its original value. A large number of pseudo-samples, say B, are
formed, efficiency is calculated relative to each resulting pseudo-reference technology, and the
empirical distribution for the efficiency measure is constructed from the resulting B efficiency scores.
Note that a total of Bxn pseudo-reference technologies and bootstrapped efficiency scores are
generated in this process (B pseudo-samples are generated for each of the n observed DMUs in the
data set). Specifically, the bootstrap we perform proceeds in four steps:

1) Solve equation (3) once for each DMU to obtain the set of empirical technical efficiency scores,

M *:{01* ,...,0; 3, based on the observed input and output data, X and Y.

2) Adjust the observed matrix of inputs, X by the calculated efficiency scores, to get a matrix of
efficient inputs, X DX , where D is a nxn diagonal matrix as its elements: 01* ,...,0; (observed
efficiency scores).

3) For each DMU ¢=1,...,n :

(i) Draw, with replacement »-1 efficiency scores from the set M " to get a pseudo-sample of efficiency

scores, M; (b)={9f’ ,...,Otb_l,@*ﬂtb +1,...,9,§ Y, 9? em™, j=1,..t-1¢+1,.,n . Note that the /" DMU's efficiency

score is maintained at its original level.
(i1) Construct a new matrix of observed pseudo-inputs as follows:

X, (0)=[D, (b) x 4)

where Dy (b) is a nxn diagonal matrix containing the bootstrapped efficiency scores 9{’ °"'°9tb—1° o, .

o

/ +1,...,92 as its diagonal elements. Note that some of the DMUs in the pseudo-sample will be efficient;
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others will be inefficient. Further note that the (# DMU's original input vector x, will be contained

in the " row of X ().

(iii) Calculate the technical efficiency of the it

X;(b) and Y by solving the linear program:

DMU relative to the pseudo-technology implicit in

max Gt(b)zes_ test
st: AY —s+=yt
AXy(b)+s =x;
eld=1

A 20, s_,s+ >0
to get the bootstrapped efficiency score 6, (%) .
Repeat steps (i)-(iii), B times to get the set of bootstrapped efficiency scores (¢ (1)...6, ()} for the

/" DMU.
4) Put 6, (b)=16; (1)+..+6, (B)VB , (t=1,..n) for each DMU.

By increasing the number of steps (B), distinct means of efficiency scores is obtained and this makes
possible the ranking of DMUs.

4 An illustration using high-schools

The data used in this study are based on the data collection from 74 high-schools in the north of Iran.
The high-schools used four inputs to produce three outputs. The results of the additive model and
other methods for this inputs and outputs are summarized in table 1. This results does not supply much
information to decision makers as it is not possible to distinguish among the performances of many of
the high-schools. The bootstrap helps to shed more light upon the performance levels of the observed
DMU.

Of the 74 high-schools in the original sample, 36 were found to operate on the best practice frontier
(9*:0). In this paper all DMUs has been ranked using Bootstrap Method. The main drawback in
existing methods for ranking efficient DMU is non-extreme efficient DMU in which including such a
DMUs do not alter PPS (Production Possibility Set), and methods can not be used for ranking them.
The method is powerful in the sense that the repetition of the procure has no limitation. These DM Us
have been ranked using AP [1], CSW [7], NORM1 [8], MAJ [9] and our method. The result is shown
in table 1 which seems quite satisfactory.

Table 1 Results obtained by AP, CSW, NORM1, MAJ and our method

Results use bootstrap method in the Additive model Ranking by other methods
Original Mean Median Ranking AP CSW NORM 1 MAJ
DMUs *
scores (6; )

1 131.3415 295.7869 285.1855 48 59 59 55 61
2 11.5334 181.0444 171.4837 32 45 44 38 50
3 0 27.2438 0 11 41 60 21 35
4 61.4810 231.5400 216.0695 40 32 28 43 32
5 0 11.0808 0 8 5 23 3 4
6 208.0993 314.8967 303.0562 52 48 54 66 55
7 0 198.5641 198.511 37 43 39 29 37
8 51.2502 341.4607 332.7379 56 25 19 38 25
9 317.8716 437.8243 422.6616 69 67 61 65 65
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Results use bootstrap method in the Additive model Ranking by other methods
Original Mean Median Ranking AP CSW NORM 1 MAJ
DMUs *
scores (6; )

10 418.1922 575.9821 547.7911 72 64 50 70 68
11 129.1713 309.3655 295.4552 51 37 20 53 39
12 289.3216 426.7248 412.7409 66 52 42 69 60
13 546.4621 607.1318 593.9522 73 70 74 74 73
14 244.3494 425.9299 411.8093 65 73 72 71 72
15 261.9596 516.2404 507.4521 71 72 68 45 71
16 0 27.2438 0 11 18 ** 26 18
17 230.9844 387.8819 371.6051 61 38 22 57 41
18 127.7186 384.1676 363.3315 60 51 35 43 53
19 127.5180 326.7460 313.4282 55 68 67 52 69
20 182.6145 227.2144 219.1959 39 36 40 55 40
21 142.5254 325.3711 307.2538 54 71 69 60 70
22 42.7581 186.5603 175.5914 34 33 36 44 33
23 0 6.5172 0 6 13 11 23 13
24 0 32.6251 0 14 8 10 11 9

25 0 342.5704 330.4306 57 47 27 36 45
26 0 149.2227 0 30 17 32 17 17
27 0 0.3227 0 3 3 21 1 2

28 130.0709 192.0315 173.9406 36 28 18 37 28
29 226.0627 430.8881 417.3520 67 53 46 48 62
30 0 0.5198 0 5 2 ** 8 3

31 0 407.1029 412.9359 64 74 73 32 74
32 0 264.8964 266.8159 46 22 24 33 22
33 0 59.3172 0 17 15 56 18 15
34 0 185.9570 171.8360 33 26 7 35 26
35 299.4050 380.3721 375.9367 59 65 63 68 66
36 202.7305 275.4625 267.9147 47 66 65 62 54
37 0 19.7869 0 9 7 ** 10 6

38 0 188.1389 178.2205 35 29 14 28 30
39 0 139.4116 132.5936 26 24 9 27 24
40 67.8972 151.6794 141.3201 31 31 47 46 29
41 0 96.3132 89.7632 19 34 26 15 34
42 0 136.6381 138.248 25 57 57 16 48
43 66.6398 206.2988 194.0092 38 50 71 49 47
44 72.7699 147.7936 141.4345 29 27 12 40 27
45 0 108.0977 84.3604 22 14 ** 20 12
46 0 10.4951 0 7 9 31 19 8

47 0 139.5439 134.1846 27 35 43 34 38
48 124.8167 236.6065 228.6723 41 61 64 50 52
49 0 45.0839 0 16 10 49 9 14
50 234.1879 305.2661 297.0225 50 60 55 72 58
51 0 34.8665 0 15 19 29 14 20
52 120.8030 259.5217 245.1513 45 44 34 47 44
53 0 22.1295 0 10 21 62 24 21
54 373.1328 470.6007 442.1664 70 58 53 63 63
55 270.0360 396.0343 378.0329 63 62 66 64 59
56 0 97.8545 100.1324 20 20 25 31 19
57 0 84.9918 64.6058 18 12 17 6 10
58 260.4233 392.9342 379.7449 62 46 30 67 49
59 190.6638 301.0276 295.0580 49 54 38 54 57
60 0 0.4227 0 4 6 15 4 7

61 275.9170 361.1228 357.3825 58 55 45 59 56
62 0 0.1221 0 1 1 8 2 1

63 0 141.3358 128.4637 28 40 52 25 42
64 347.4769 434.5885 406.3480 68 39 33 51 43
65 131.1285 247.5961 232.1854 43 30 13 41 31
66 0 101.6720 0 21 16 48 22 16
67 0 31.5332 0 13 11 ** 7 11
68 175.2277 318.5097 298.9120 53 56 51 58 51
69 0 121.0747 95.9211 23 69 70 13 64
70 0 127.5704 123.3151 24 49 41 12 46
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Results use bootstrap method in the Additive model Ranking by other methods
Original Mean Median Ranking AP CSW NORM 1 MAJ
DMUs s
scores (6; )

71 0 0.221 0 2 4 ** 5 5
72 594.6988 730.6583 704.4613 74 63 58 73 67
73 174.1718 237.4257 230.9656 42 42 37 61 36
74 0 2519113 244.0799 44 23 16 30 23

5 Conclusion

This study proposed a procedure based on the Bootstrapping method to rank the all DMUs in non-
radial models. The result is shown i1s Table 1. It can be seen that the difference between the results
obtained by AP, CSW, NORM1, MAJ and our method is not significant.
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