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Abstract In this paper, we introduced a distributed order time fractional Coronavirus-19 disease
transmission involving Caputo-Prabhakar fractional derivative of o order in time t. The coronavirus 19
disease model has 8 inger dients leading to system of 8 nonlinear ordinary differential equations in this
sense. To solve these types of equations, we proposed a numerical method based on the upon
Legendre wavelets optimization approximations. In the first stage, by applying the Legendre wavelets
optimization functions and Laplace transform an exact formula for the Prabhakar fractional integral
operator is derived. Then, we apply this exact formula and the properties of Legendre wavelets
optimization functions to change the given equation into a system of algebraic equations. We
calculated the approximation optimal solutions of our system applying the Newton’s iterative method.
The optimal approximate solutions obtained by using the proposed method are considered as the best
solutions for the proposed equation. Error analysis is examined to verify the practical efficiency of the
proposed method. In the end, for the efficiency and performance of the proposed method, the
numerical results are shown in the figure.

Keyword: COVID-19 Virus, Distributed-Order, Legendre Wavelets Optimization Approach, Caputo-
Prabhakar Derivative, Error Analysis.

1 Introduction
In this Section, we consider the following distributed order time fractional Coronavirus-19

disease (COVID-19) model:

DP@S(t) = —=S(t)(a1(t) + aD(t) + azA(t) + asR(t)),

DP@[(t) = S(t)(ay1(t) + aD(t) + azA(t) + a,R(t)) — (6, + {4 +
ADI(E),

D@D(¢) = e,1(t) — (11 + p1)D (),

DY@WA(L) = §1(t) — (61 + py + K1) A(L),

DO@R(t) = D (t) + 6,A(t) — (v1 + EDR(D),
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DT () = w A(t) + viR(t) — (07 + T)T (D),

D@H(t) = A,1(t) + p1D(t) + K, A(t) + & R(E) + 0, T(0),

DY@E(t) = 1,T(t),
subject to the initial conditions:

S(0) = Sy, 1(0) =1, D(0) = Dy, A(0) = Ay, R(0) = Ry, T(0) =Ty, H(0) =
HOJ E(O) = EOJ (2)

in which all parameters are positive and their physical interpretation are studied in [1]. In
Equation (1), the function S(t) is the class of susceptible, the function D(t) is the class of
asymptomatic infected, the function I(t) is the class of infected asymptomatic infected
undetected, detected, the function A(t) is ailing symptomatic infected, undetected, the
function R(t) is recognized symptomatic infected, detected, the function T'(t) is the class of
acutely symptomatic infected detected, the function H(t) is the healed class and the function
E(t) is the death class. Also, and D@ shows the distributed order Caputo-Prabhakar
fractional operator of a order in time t such that « € (0,1].

The COVID-19 are a large collection of viruses which have a specified corona or *crown’
of sugary-proteins and because of their form, they were called COVID-19 in 1960. Due to the
world health organization (WHO), COVID-19 is spreaded via people who have been infected
with the corona virus. The virus may quickly transmit via small drops from the mouth
compilation or nose of anybody infected via this virus to cough or sneeze. The small drops
then land on surfaces or objects which are touched and the healthy person regulates their nose,
mouth or eyes. For the first time in the Wuhan city the COVID-19 was appeared that this
virus has not been previously known in humans. Bats or snakes have been skepticed as a
potential source for the prevalence, though other experts currently consider this unlikely.
Cough, fever, breathing difficulties and shortness of breath are the initial signs of this
infection. In the next stages, the infection may reason pneumonia, kidney failure, even death
and severe acute respiratory syndrome.

Differential equations with distributed order fractional derivatives and obtaining their
numerical solutions using the analytical and numerical methods are a useful tool to describe
important applications in the different fields of physics [2, 3], chemistry [4], mathematics [5]
and engineering [6]. For the first time in 1960s by Caputo’s is studied the distributed-order
differential equation [7] to expand the stress-strain equation of inelastic media. Later in [8],
the multi-term viscoelastic equation of fractional order as a model of distributed-order
equation is developed. the differential equation of distributed-order is considered as a
extension of the differential equation of multi-term fractional order. Recently,the numerical
schemes obtaining the numerical solutions for a class of distributed order fractional
differential equation with fractional derivative have been studied, for example, Fei et al. [9]
studied a numerical method based on the Galerkin-Legendre spectral method to numerically
solve a two-dimensional time fractional fourth-order partial differential equation of
distributed-order. Zaky et al. [10] studied a numerical method based on the Legendre spectral-
collocation method to numerically solve a distributed-order fractional initial value problems.
Zhang et al. [11] studied a numerical method based on the Crank-Nicolson ADI Galerkin-
Legendre spectral method to numerically solve a two-dimensional Riesz space distributed-
order advectionsb“diffusion equation. The nonlinear fractional differential equations of
distributed-order are solved by using Legendresh“Gauss collocation method by Xu et al.
[12]. Dehghan et al. [13] studied a numerical method for solving fractional damped diffusion-
wave equation of distributed-order by using spectral element method. Guo et al. [14] studied a
solution for the two-dimensional distributed-order time-space fractional reaction-diffusion
equation by using Legendre spectral element method. Morgado et al. [15] studied a solution


http://dx.doi.org/10.71885/ijorlu-2024-1-661
https://ijaor.ir/article-1-661-en.html

[ Downloaded from ijaor.ir on 2026-02-17 ]

[ DOI: 10.71885/ijorlu-2024-1-661 ]

A numerical method for solving distributed order time fractional COVID-19 virus... 27

for the distributed order time-fractional diffusion equation by using Chebyshev collocation
method. Mashayekhi et al. [16] studied the synthetic of block-pulse functions and Bernoulli
polynomials, Gorenflo et al. [17] studied the Fourier and Laplace transforms for solving the
one-dimensional distributed order diffusion-wave equation, Li et al. [18] proposed a classical
numerical quadrature method, Aminikhah et al. [19] used a combined method based on the
Laplace transform and new homotopy perturbation method To solve a particular class of the
distributed order fractional Riccati equation, Mashoo et al. [20] studied the stability of two
classes of distributed-order Hilfer-Prabhakar differential equations, Mashoo et al. [21]
proposed the stability of distributed order differential equations form of Hilfer-Prabhakar,
Aminikhah et al. [22] proposed two numerical methods to solve the distributed-order
fractional Bagley-Torvik equation by the fractional differential transform and Grunwald-
Letnikov method, Ye et al. [23] applied a compact difference method, Mashoof et al. [24]
studied an operational matrix for solving the fractional differential equations of distributed
order, Yuttanan et al. [25] studied a numerical method based on the upon Legendre wavelets
polynomials for solving linear and nonlinear distributed fractional differential equations, the
existence and uniqueness for differential equations of distributed order proposed by Ford et al.
[26] , the uniqueness of solutions for time-fractional diffusion equations of distributed order
on bounded domains proposed by Luchko [27], Bhrawy et al. [28] proposed a numerical
method based on the Jacobi-Gauss-Lobatto collocation method to solve Schrodinger
equations of distributed order and Kharazmi et al. [29] studied a solution for the fractional
partial differential equations of distributed order by using pseudo-spectral method.

The main aim of this paper is to study an efficient numerical method to numerically solve
Equations (1) and (2) . This efficient numerical method is based upon Legendre wavelets
optimization approach. For the first time, we derive an exact formula for the Prabhakar
fractional integral operator in terms of Legendre wavelets optimization functions. Then, by
using this exact formula for the Prabhakar fractional integral operator, we transform the
solution of the distributed order time fractional Coronavirus-19 disease model to the solution
of algebraic equations.

The outline of this paper is organized as follows. In Section 2, we briefly introduce the
mathematical preliminaries and some necessary definitions which are required for our
problem. Also, in this Section, we express the wavelets and Legendre wavelets optimization
functions. In Section 3 , we express the approximation function and also, we describe the
Riemannsb*“Liouville fractional integral operator for Legendre wavelets optimization
functions. In Section 4, we derive a numerical method to numerically solve Equations (1)
and (2) . In Section 5 , the error bound is studied. In Section 6, some examples are
demonstrated to show the reliability and validity of the proposed method. In the end, in
Section 7, the main and important conclusions of the proposed method are highlighted.

2 Preliminaries

In this Section, we study the basic, important definitions and some essential lemmas of
fractional calculus which will applied for later. Moreover, we display important properties of
the wavelets and Legendre wavelets optimization functions.

Definition 1 [30-33] Leta € (n — 1,n],n € Nand u € L[0, b] such that —c0 < 0 < x <
b < oo. Then, for a function u, the Riemann-Liouville fractional integral of order a and
Riemann—Liouville fractional derivative of order a are given respectively by
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ol%u(x) = mf (x — )% tu(r)dr, ()
oD%u(x) = F(n > diln fx (x — )" 1%y (r)dr. 4)

Definition 2 For « € (0,1] and u € €(0, b). Then, the Caputo fractional derivative of order
« is given by

SDEF() =0 1@ Tu(x) = —— [ (x — ) *s-u(r)dr. (5)

'l-a)

In the recent years, one of the fractional operators that has attracted the attention of many
authors is Prabhakar fractional operator. This fractional operator is as generalization of
derivatives of both Riemann—Liouville and Caputo types. Indeed, this type of derivative is
similar to the Riemann—Liouville derivative with a more general integral operator with the
kernel

e(y,p,a,w) = x* 1E2,/a, p,a,w,y €EC,
in which E;’,a is the Prabhakar function and studied by Prabhakar in 1971 [34],

k
EZ,a(x) = Yk=o0 F(F(Lk)x— Re(p),Re(a) > 0. (6)

T (pk+a) k!’
In case y = 0 we have

“()_F()

Moreover, in case y = 1, we find the widely known function as two—parameter Mittag—
Leffler, i.e.

E;},a(x) = Ep,a(x) Zk 0 k

F(pk+a)
by putting « = y = 1, Eq. (6) converts to the classical Mittag—Leffler function, i.e.

o 1
E;1(x) = Ep(x) = o mxk-

Definition 3 Suppose thatn — 1 < Re(a) <n,n € Nandu € L'[0,b], o <a<x < b <
co. Then the Prabhakar fractional integral of order a with p, @, w,y € C is defined by

E) ¢wott(®) = [, (x = ) E} o (w(x — )P)u(t)dr, Re(p),Re(a) >0, ()
in which E} , is defined in (6) .

Definition 4 For u € L'[0, b] the Prabhakar fractional derivative of order a with p, a, w,y €
C is defined by

O]D)Z)/,a,wu(x) = d_n[Ep)rlL awatd(X), x>a. (8)

Definition 5 The Caputo—Prabhakar derivative of order a with p,a, w,y € Cis defined by

CP]D)Zawu(x) = pn a,w,a gy nu(x) (9)

It has the following property
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]Epaa)a gP pawu(x) - u(x) - u(O) x> 0. (10)

Definition 6 The distributed order derivative of order w(a) > 0 that w(a) > 0 is the
distribution function of order 0 < a < 1, of function u(t) is given by [35]:

DY@ y(t) = fo w(@) D), u(t) da, (11)
in which C"]D)ly,aw is the Caputo—Prabhakar derivative of u of order 0 < a <1 with

p,a,w,y €C,w(a)> 0isthe weight function and
[, w(@)da =C,C>0. (12)
Also, the Laplace transform of the Caputo—Prabhakar derivative of order 0 < a < 1 with
respect to t is given by:
{CP]D)pawu(t); s} =s%(1 — ws™P)'U(s) —s* (1 — ws™P)?u(0), (13)
in which U(s) is the Laplace transform of u and defined by U(s) = fooo e *tu(r)dr.

Lemma 1 [34] Let p, @, w,y € Cand R(a) > 0,R(s) > 0. Then, we have:
L{t*E} (wxP); s} = s7(1 — ws ™)™, |ws™P| < 1.

2.1 Wavelets and Legendre wavelets optimization functions

This Section recall a description and study of the wavelets and Legendre wavelets
optimization functions. Wavelets constitute a collection of functions made from translation of
a single function and dilation called the mother wavelet. When the dilation parameter a and
the translation parameter b vary continuously, we have the following collection of wavelets
that theses collection of wavelets are continuous, as follows [36]:

1
W, (£) = lal 2 W(=D), (14)
where a,b € R and a # 0. Limitation of the constants a and b to discrete values such as
a =ay',b =nbyay' and I,n € N, where a, > 1,b, > 0 yields the following family of
discrete wavelets:

l
W (t) = laol W(agt — nby), (15)
where in Equation (15) , the function ¥, ,,(¢) is the wavelet basis for L*(R). Let M, > 0.
Then, the Legendre wavelets optimization functions ¥, ,(t) on the interval [0,tf) for
n=123,..,2""andm=0,1,2,..,M — 1 are defined as:

L / 1 2!

0, otherwise,
in which P,,(t) in Equation (16) are the famous Legendre polynomials of order m. The
Legendre polynomials of order m satisfy the following recursive relarion:
Po(t) = 1, Py (t) =t¢,

Prys1(£) = ot tPpy (£) = = P4 (8), (17)

and the analytic form of the Legendre polynomlals of order m is given as:
m m+k—1
m+1(t) - ZmZ =0 tk (k ) (mZ );

where (Zl) mem= 1)k'(m **1 Also, the family of Legendre wavelets optimization functions
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with respect to the weight function are an orthonormal family.

3 Function approximation

Let W, », € L2(0,1) be the space spanned by a family of ¥, ,,(¢t) forn =1,2,3,...,2'"* and
m=0,1,2,..,M — 1 that the space W, ,, is defined by:
Wim =
span{¥1o(t), ..., ¥y1-1 (), W1,1(t), ., Wyr-1 1 (), Wy m—1(8), o, Woi-1 1 (O }.
Let f(t) € L?(0,1) that the function f(t) is an arbitrary element Then, we have:
VZEW, Il f—g IS f— 2z,
where g is a unique best approximation of f. Since f has the unique best approximation as g,

then, we have:
Zl 1

f)=g= Z %;(1) dn,mwn,m(t) = DTB(t): (18)
where d,, ., is the Legendre wavelets optimization functions coefficients and
[dl O(t) 21 1o(t) dl 1(t) zl 11(t) dlM l(t) 21 1 M- 1(t)]
IB%(t) =
[P1,0(2), o) Wyt-1 4 (€), W11 (0), o, Wotm1 1 (6), Wi y—1(8), oo, Wt-1 4 (O] (19)
Due to orthonormallty property of the set of Legendre wavelets optimization functions, the
coefficients f,, ,,, are given in Equation (18) can be computed applying

_  {(f®OFamx) _ !
dn,m - (‘Pn,m(x)’lpn,m(x)) - <f(t)’ lpn,m(x)> - fo an,m(x)f(t)dtl (20)

where (-,-) shows the inner product of the Hilbert space L?[0,1].
Theorem 2 Let ¥, ,,,(t) be the Legendre wavelets optimization functions which is introduced
in Equation (16) . Then, we have:

1 1 _Znth
L(Wpm;s) =22 ’m +oe 2

x o 2o = (1) (:k 1) G (e (=1) = D)oy (21)

where L represents the Laplace transform.
Proof. The Legendre wavelets optimization polynomials ¥, ,,,(t) in Equation (16) can be
rewritten in terms of unit step function A, as follows:

L 1 2l
Wom(t) = 22 ’m + E/lzz_zztfpm[;t —2n+1]
l l
~An, 22 /m + %]P’m[:—f t—2n+1], (22)
2

where A, is defined by:
1, t=c,
A = {0, t<ec.
By taking the Laplace transform from Equation (22) , we obtain:

L 1 2! 2n-2
L(Wpm; 5) W m (L) = 22 /m 3 L0z, Pul (=5
L 1
—22 /m+EL(Azz_rlzt [ (t——tf)+1] s)
L 1 2P
22 m+-e 2 L(IP’m[;t—l];s)

I;s)
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L t N 2!
—2z /m+ L L(Pm[;t+ 1];s). (23)

By applying the definition P, (t), we have:

l m+k—1
L(¥umis) = 22 Jm+ Lo P Lm g 0<— -0 () )
m

m+k—1
2 /m+ eI L2m 0(—t+1)k(m)( 2 );s)

m

m+k-1

o e, () (25)

x {ezz_fz(f—fl —1)k;s) — L(f—fl + 1% 5)). (24)

Using the definition of binomial expansion, we obtain:

m+k—1
LV s )—22+m /m+ oA e 0(;?)( 2 )
m

X e LTk, () corEormio - s, () o ing

Zntfs

= g3t fm+%e_ 2l
Kl /m m+k—-1 ol 1

xS S 5 (1) (7)) G e - D (25)

Then, the result is proved.
Theorem 3 Let ¥, ,,,(t) be the Legendre wavelets optimization functions which is introduced
in Equation (16) . Then, we have:

14 —
]Ep a,w,0 n,m(t) -

(0, te [0, =7t
e

IXEY foera (0t = te [t 2t
T

\ X Ep)w/,a'+k—r—1 LarkTT=2 % E;))/a+k o1 (@(t = _tf) )t > o

Proof. Applying the definitions of Prabhakar integral and the Laplace transform, we have:
L(Ep a,w,0 Wnm(t);s) = L(ta_lEg,a(wtp) * Wy m(0);s)
= L(t*E) (wtP); §) X L(Wnm(); 5), (26)
where = is the convolution operator. Using the Theorem 2 and the Lemma 1, yields:

Znth

l o
LEEY oW (D);s) = 224 /m+le 2l

p,a,w,
m+k—1 1

k! (m . -
3o o 50 (7 ) O - Dy @)
Applying both sides of Equation (27) by inverse Laplace transform yields:

l m+k—1 1
14 _ o>tm 1¢m Kk k! (m) 2°\ k—r
]Ep a,w,0 n.m(t) = 22 m+ 5 &k=0 Zr=0  \k m 2 (tf)
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] o PPN 2Ny s
e 21 f (_1)1' e Zl f

x L7

Sk—r+1+a(1_ws—p)y - Sk—r+1+a(1_ws—p)y 4 t)

L 1 ki ymy (MR o
= 2ztm m+ > Zl=02]r{=oﬁ(k)<m2 )(—)kr

—r— 2n-2
X [/‘lgtf(_l)rta-l-k 4 ZE/])/,a+k—T—1(w(t - 21 tf)p)
2

—p— 2
—2,22_111tfta+k " ZE;))/,a+k—r—1(w(t - 2_7 tf)p)]'
By applying equation (28) , we consider the following three cases:

2n—2
Case 1: for ¢ € [0, t;), we have B} , , W m(t) = 0.
2n—2

2l

Case 2:fort € | tf,zz—? tr), we have:

m+k—1

L 1 Kkl (m o
Eg,a,w,olpn.m(t) = 22" |m + > o Zr=o Z(k ) <m 2 ) (—1D)Treatk-r-2

2n

-2
2l tf)p)l

Y
X Ep,a+k—r—1 (w (t -
2n

Case 3:fort > ?tf, we have:

L 1 ki rmy (MEkol
Ez,a,w,okpn,m(t) =2 |m+ 2 k=0 2175:0 ;(k ) (m z )
= 2n-2
X [(~D)Tt T2 e (0(E =T t0)P) =
P 2n
(—1)rtatk-T 2Eg,mk_r_l(w(t —tP)].

Then, the proof of this theorem is ended.

4 Solution of the COVID-19 model

In this Section, we study a matrix numerical method to approximate the solution of the
COVID-19 model (1) . For this aim, we apply Legendre wavelets optimization functions to
numerically solve the COVID-19 model (1) and (2) . We first approximate the Caputo
derivative of the unknown function S(t),I(t), D(t), A(t),R(t),T(t), H(t) and E(t) applying
Equation (18) as follows:

PO wS(t) = DIB(1),

Y I(t) = DIB(b),

cPpY . D(t) = DIB(t),

0,a,w
p,a,w

PO} 4 WA(t) = DIB(L),
D) L wR(t) = DIB(L),
PDY LW T(t) = DIB(L),
DY L wH() = DIB(L),
PD} 4 WE () = DIB(1),
where for i = 1, ...,8, the coefficients D; is given by:
DI = [di o(0), ) diyio 5 (8, i1 (0), o, diims ; (0, yy1 (), s i g, (D]
Then, for simpleness of sentence, we let that S(0) =0,/1(0) =0,D(0) =0,4(0) =
0,R(0)=0,T(0) =0,H(0) =0, E(0) = 0. By taking the Prabhakar integral from both

(28)

(29)

(30)

(31)
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sides Eq. (31) , we get:
St = Ep g0 " DpawSE),

p,a,w,0

I(t) = ]E;)"a’w’o CP]D)Z,aJwI(t),

D(t) = E} 4o DpawD (),
A) = E} g0 T Dp A, (32)
R(t) = Ez,a,w‘o PD} 4 wR (),
T(t) = IE;aJwJO D} T,
H(t) = IE;aJwJO PD} 4 WH(D),

E(t) = E;’a’w,o CP]DZ,a,wE(t),

By applying Eq. (32), yields
S(t) = DI EY ~  B(t),

p,a,w,0

I(t) = DI E' B(t),

p,a,w,0

D(t) = DI E' B(t),

p,a,w,0

A(t) = DI EY B(t), (33)

p,a,w,0

R(t) = DI EY B(t),

p,a,w,0

T(t) = DI E' . B(t),

p,a,w,0

H(t) = DI'EY  B(t),

p,a,w,0
E(t) = DI EY B(t).

p,a,w,0

By applying the definition of the vector function B(t) we have:
Eg,a,w,OB(t) = [[EZ)/,a,a)IOlpl,O(t)' e E%,a,wlolpl,M—l(t)l Y
Eg,a,w,olpzl—l,o @), .., [Eg,a,w,oll’zl—l,Mﬂ(t)]T'

Assume that

EY Yy =Cl,,¥Yx), m=01,.,M-1 n=12.,2""

p,a,w,0
in which
Crm = [€10 s s C1 M1 ...,c:{fnl'o, ...,c:iinl'M_l]T, =
1%
([Ep,a,a),olpn,m(t)l lpp,q (t) )
Thus,
4 ~
Ep,a,w,O‘P(t) =
1,0 1,0 1,0 1,0
|[Cl’0 o CiM—1 o Gyl Czl—l,M—1]
271 pM—1 271 pM—1 2171 m—1 2171 M—1 Y(t)
10 o Cimle 219 211
1= Cpa0? (), (34)

where C, 4, (t) is called the Prabhakar fractional integration matrix for the Legendre
wavelets optimization functions, that these coefficients are calculated in the Theorem 3. Then
we have from Equations (33) and (24) that

S(t) = Df Cpp 0 ¥(D),

I(t) = D] C)q0¥(0),

D(t) = DI Cp a0 (1),

A(t) = D Cp 0P (1), (35)
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R(t) = DS Cp g (1),

T(t) = Dg Cpaw¥(®),

H(t) = D] Cpa0¥(D),

E(t) = D§ Cp a0 P (D).
By applying the definition of distributed order derivative, substituting Equation (35) into
Equation (1), we have:

BT (t)D, fol w(a)da =
_l{JT(t) (Cp a, coDl (allpT(t) (Cp a, wDZ + anJT(t) (Cp a, w
+a;WT () CpawD4 + a,PT(t) CpawD5),
BT (t)D, fo w(a)da =
LIJT(t) (Cpale(aleT(t) (Cp awDZ + aZLpT(t) (Cpaw
+as ¥ (1) (Cpaa)D4 + a, 9T () € 0 Ds) — (1 + {1 + A)PT(E) € 4., D,
]BT(t)DB fo w(a)da - EleT(t) (Cpaw (771 + pl)LpT(t) Cp awDB'
]BT(t)D4 fo w(a)da - ZquT(t) (Cp aw (91 + H + Kl)qu(t) Cpatzh (36)
IBT(t)DS f w(@)da = 1qJT(t) (CpawD3 + BILPT(t) (Cpaw - (v +
El)lp'r(t) (CpawDSJ
]BT(t)D6 fo w(“)da = ﬂleT(t) (CpawD4 + VllpT(t) (Cpaw - (01 +
Tl)lpT(t) Cp a,wDe
]BT(t)D7 fo w(“)da - Alqu(t) (Cp awDZ + pquT(t) Cpaw
+K1lpT(t) (Cpaa)D4 + EleT(t) (Cpaa)DS + aquT(t) (Cp awD6'
BT (t)Dg fo w(a)da = 7, ¥T(t) (Cpaw
By using the Gauss—Legendre numerical integration WhICh Is given in [37]. First, the integral
in Equation (36) , is computed, then , we collocate at Newton—cotes nodes t; defined by:

t; = szlMl,j 1,2,3,..., 21 M, (37)
we obtain
]BT(tl)Dl =1 ( w]w( 19 )) - LPT(t ) Cpale(aleT(t ) (Cpaw
+a2‘PT(tl) «:pang + agl}’T(t D) Ch o wDa + a7 (t;) C 40, Ds),
BT (t)D; Ty GoioG —39) = WT(t) ChewDi (@¥T(6) ChaD; +
a, ¥ () CF 40 D3
+as 97 (1) (CpawD4 + a4qﬂ(t D ChawDs) — (1 + & + )WY () CF 4 D2,
B” (t:)D3 X1 ( ;W ( 19)) =
EllPT(t ) (Cpa'a) (771 + pl)LpT(t ) CpawD3f
]BT(ti)D4 j=1 (waw(E 19 )) - ZlLPT(t ) (Cpaw - (91 + U +
Kl)LPT(tl) (Cpatzb (38)
B (t)Ds £y G@oG—59)) =
mPT(t;) C) o wDs + 91LPT(t ) (Cpaw (V1 +EDWYT(t) C) 40 Ds,
B (t:)Ds ( ij( —-19)) =
T (t) € o Da + VllPT(t ) Cpaw (01 + 1)WY (t:) €} 4.0 D,
B" (ti)D7 =1 ( w]w( - _19 )) - AllPT(t) (CpawDZ + pllPT(t) (Cpaw +
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Klqu(t) (Cp a, a)

+€1LIJT(t ) (CpawDS + quJT(t ) (Cp awD6'

B" (ti)DS j=1 (EZD'](U(E - _19 )) - quJT(tL) (CpawD6'
in which @; and 9; are weights of GauSSBT)“Legendre and nods of Gausseb“Legendre,
respectively, that theses weights of Gausseb“Legendre and nods of Gausseb*“Legendre are
given in [37]. By applying the Newton’s iterative method, we can be calculated the unknown
parameters D; in Equation (37) . The initial guess for solving Equation (37) using the
Newton’s iterative method can be calculated similarly by the method studied in [38]. To
select the initial guesses for solving Equation (37) using the Newton’s iterative method, in
the first stage, we put l = 1 and M = 1, then we solve Equation (37) applying the Newton’s
iterative method. In this stage, we calculate an approximation solution to our system. In the
next stage, we put [ = 2 and increase the value of M, considering the initial guess in the first
stage, we obtain the approximate solution in this stage. We follow this approach until the
desired results are achieved. By determining the unknown parameters D; in Equation (37) ,
the approximate solutions of S(t),I(t), D(t), A(t),R(t),T(t), H(t) and E(t) can be obtained.

5 Study and check error analysis

In this section, we present the convergence and error analysis for the proposed method. Here
we define the Sobolov space of order g that g is a integer as fO||OWS'
H(a,b) = {f € L*(a,b)IfV) € L*(a,b),1 <j < g}, (39)
in which the derivative fU) € L?(a, b) is in the sense of dlstrlbutlon [37].

n-1 n

Lemma 4 Suppose that g € H%(0,1), ¢ = 1and I;, = [, 5;=]. Also, let g = Zn 1 Gn,
that g, € H1(I,). If Y, = span{y,, o (%), ..., Y -1 (x)} and BL, (x) € Y;, be the best
approximation of f,,, that B, = [byo, .., bum—11" and ¥, (x) = [Yno(X), -, Y m—1 ()"
Then, we have
g —B"Y ll;201)< d(M2-1)77 | g@ l2¢0,1)» (40)
where B = [By, ..., B,i-1]" and d depends on q.
Proof. Let g¥(x) = XM, g,(x). Since g¥(x) is the polynomial of best approximation of

gn € L? [37]. Thus from equation (5.4.11) in Ref. [37] displayed that g < M + 1.
Lemma5 Suppose the assumptions of the Lemma 4, hold. Then, we for g > 4 have

Il g" = (BTY) lleeo,y< d(M2I-1)*9 | g l12¢0,1)- (41)

Proof. Consult [39].
Lemma 6 Suppose the assumptions of the Lemma 4, hold. Then, weforg > 4and 0 < a <
1 have

”gP D;))/,a,w(g - BTII’) "L°°(0,1)< dy,p,a,w (21—1)4+a—qM4—q ” g(q) ”LZ(O,l)' (42)

Proof. Using Eq. (9) and by triangular and Holder inequalities, we obtain
| 67D} 009 — BT < T30 [, (220 Pi(x — $)P%)lgn’ — (g%)'Ids

-
< X221 lgn' = @M oy J, TZo PiCx = 5)Pds,
F(—y+l)w
T(-y)T(pi+1-a)i!

in which P; = Due to the definition of the Prabhakar function the
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summations inside the above integrals are convergent. Consequently, by calculating the
integrals and recalling that the length of each subinterval I, is 217! < 1, we get

|67 Dpaw(g — BT P)(0)| <

-1 P;
it lgn' = @) oy (@D B2 mmy

. . P;
With a SImpIe calculation, we have 72, pravvi E, ;- y_o(w). It follows from Eq. (6) that
Y20 et = =E,}_,(w) Then, we from Lemma 5 conclude that

| §7D} 0w (9 = BTY) ()| < @DYE, Y (@) T227 11gn’ — (93 oy
< (21 DYE, ) _a(@)lg = (BTY) Il
< dy,p,a,w(zl 1)4+a qM4 a I g(q) ||L2(0,1)'

The above equation shows that the proof is complete.

Lemma7 Letg € H1(0,1) suchthatq > 4, g = Zn 1 gn and ULy, (x) be the best
approximation to OPD”a wdn fromY,,. Then for a € (0,1) we get the following inequality:

g — ur y,p,a,wlp ||L2(0,1)< Oy,p,a,w(zl_l)s_qM4_q I g(q) ||LZ(O,l)'
Proof. Let g(x) =E) .06 Djpawd(x), than due to Eq. (34) , we have
UTChuw¥(x) = pawOUTz/)(x). Then,
|g(x) - Cy,p,a,wlp(x)l = |Eg,a,w,o( gP D;])/,a,wg(x) - UTI/}(x))l
applying the equation (7) and by triangular and Holder inequalities, we get
|g(x) - UTC pawd’(x)l
-1 .
2 f (Zl 0 Ql(x_s)pHa 1)| o D;)J/aw(gn - M)lds
-
<Tici 167 DYaw(@n = g0l w, J B0 Qilx = )P 1ds,
in which Q; = % With a similar process in the proof of Lemma 6, we get
|g(x) - UTCy.p,a,wd}(x)l
21 1 cp 14 gM 21-1 Qi
Z | Dp“w B )||L°°(I )( )0—' 0 pita’
Because .72 m = E”a+1(w). Then, we from Lemma 6 have
- -1
|9() = UTCppawd()]| < @DE) 44 (@) X221 [ 67 Dhaw(Gn —
gl
AL (1)
<@ Ey e (@6 Dpaw@ =B wp
< yp,a,w(zl_l)s_qM4_q ” g(Q) "L2(0,1)'
It follows that
2 1 2
lg = U Coaatbllzgry = o 19G) = UTCpauip ()] dx

< praw(zl 1)10 2qM8 2q I g(q) ”
that completes the proof.

L%(0,1)

(43)

(44)
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Fig. 8 Numerical experiments of death class for @ = 0.5, p = w = 1 and various values of [ and M.

6 Numerical experiments

Measurement-induced COVID-19 conductions demonstrate an interesting and attractiving
novel class of phase conduction which appear light on the resilience of the present type of
viruses against a known one. They were initially discovered for systems at integrable models
and ordinary differential equations dynamics. To show the practicability and the efficiency of
the proposed approximation method based on upon Legendre wavelets optimization approach,
we demonstrate test examples and find their approximation solution via the method discussed
in the previous section. We apply the proposed approximation method to numerically solve
the system (1) to investigate the accuracy and capability of the proposed method. Moreover,
for all cases, we put ¢ = 1. In all computations, we use here all the computations done in
Matlab (R2020b) software for the problems implemented in numerical experiments and all

2j-1

obtained numerical results are computed with ten considerable digits. Taking t; = W’j =

1,2,3,...,2"1M, we have solved this given model in Equation (1) with various values of I
and M. The numerical results for « = 0.5 and various values of [ and M are shown in Figs. 1-
7 and 8. To show the behavior of this virus model with contacting to infected or
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asymptotically infected, we demonstrated the graph of the approximate solutions of
S(t),1(t),D(t),A(t),R(t), T(t),H(t) and E(t) for « = 0.5 and various values of [ and M. In
Figs. 1-7 and 8, the approximate solutions of S(t),1(t), D(t), A(t),R(t),T(t), H(t) and E(t)
obtained by the proposed method plotted by [ = 2,3,4,5 and M =3 (left) and [ =1,M =
3,4,5,6 (right) are shown. Fig. 1 display the approximate solutions of the class of susceptible
for « = 0.5 and various values of [ and M. Fig. 2 display the approximate solutions of the
class of infected asymptomatic, infected undetected and detected for « = 0.5 and various
values of [ and M. Fig. 3 display the approximate solutions of the class of asymptomatic
infected for « = 0.5 and various values of [ and M. Fig. 4 display the approximate solutions
of the ailing symptomatic infected, undetected for &« = 0.5 and various values of [ and M. Fig.
5 display the approximate solutions of the symptomatic infected and detected for & = 0.5 and
various values of [ and M. Fig. 6 display the approximate solutions of the class of acutely
symptomatic infected detected for @« = 0.5 and various values of [ and M. Fig. 7 display the
approximate solutions of the healed class for @ = 0.5 and various values of [ and M. Fig. 8
display the approximate solutions of the death class for « = 0.5 and various values of [ and
M.

7 Conclusion

In this paper, a computational approach based on the upon Legendre wavelets optimization
approximations is proposed for acquiring an approximate solution of distributed order time
fractional Coronavirus-19 disease model where the time-fractional operator are given in the
Caputo-Prabhakar sense. To acquire the numerical solution of distributed order time fractional
Coronavirus-19 disease model, we made an exact formula for the Prabhakar fractional integral
operator by using the Legendre wavelets optimization functions. Then by using this exact
formula and the properties of Legendre wavelets optimization functions, we reduce the
presented model into a system of algebraic equations, that these system of algebraic equations
have been solved by using the Newton’s iterative method. In addition to, in this study, the
Legendre wavelets optimization functions and their significant properties are presented. Error
analysis of the approximation method is examined. The numerical example is plotted to show
the practical efficiency and accuracy of the proposed numerical method. The high
applicability of the given results in this paper show the practical applicability and high
accuracy the considered method. Also, The solutions are approximated by applying the
presented method with « € (0,1], t € [0,1] and different values of parameters as M, [ and
from the results of figures and tables, we see that the growth of convergence increases with
increasing value M. In addition to, the results of figures and tables show that the proposed
numerical algorithm is simple and effective allowing a more assertive analysis of the COVID-
19 model.
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