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Abstract  This article introduces a new way to express the implicit complementarity problem and 

shows that solving this new version is just as effective as solving the original problem. The authors 

also present another alternative version of the problem, which is based on using a strictly increasing 

function. Both approaches provide equivalent solutions, offering potentially more efficient or 

insightful ways to address the original problem. 
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1 Introduction 

 

The implicit complementarity problem (ICP) is a generalization of the classical 

complementarity problem that arises in a variety of applications such as optimization, 

economic equilibrium models, and engineering systems. Given its complexity and wide 

applicability, researchers have explored various equivalent formulations to analyse, solve, and 

understand the problem. For details see, [1], [2] and [3]. Bensoussan et al. [4] presented the 

implicit complementarity problem (ICP) and it is a class of mathematical optimization 

problems that solves a system of nonlinear equations which includes both complementary 

conditions and equality or inequality constraints. ICPs can be formulated as follows: 

Consider the matrix A ∈ R
n×n

 and the vector b ∈ R
n
, the implicit complementarity 

problem denoted as ICP(A, b, f ) is to find the solution r ∈ R
n
 to the following system: 

H(r) = r − f (r) ≥ 0, F(r) = Ar + b ≥ 0, H(r)
T
 F(r) = 0,    (1.1) 

where f (r) is a mapping from R
n
 to R

n
. 

The study of equivalent forms of the implicit complementarity problem is crucial for 

advancing both theoretical understanding and practical solution methods. By transforming 

ICP into alternative formulations, researchers can leverage specialized techniques and tools, 

leading to more efficient and robust solutions. By leveraging these equivalent formulations, 
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researchers have developed algorithms with improved convergence properties and 

computational efficiency. 

One of the most popular techniques for developing fast and affordable iterative 

algorithms is the equivalent formulation of the linear complementarity problem (LCP) as an 

equation with the same solution. The LCP (A, b) is described in an analogous form and 

several iteration techniques are given by Bai in [2]. For more details on equivalent form of 

LCPs and related iteration methods see, [6], [7], [8], [9] and [10]. The concept of equivalent 

formulation has also been used effectively for other complementarity problems, like implicit 

complementarity problem [8] and [11] and horizontal linear complementarity problem [12]. 

Mangasarian offered an equivalent forms of LCP(A, b) in [13] and described as 

r = (r − ωΩ(Ar + b))+, 

where r+ ∈ R
n
, (r+)i = max{0, ri} and Ω ∈ R

n×n
 is a positive diagonal matrix. Motivated by 

the works of Mangasarian [13], we present an equivalent form of ICP. 

The article is structured as follows: Section 2 introduces an equivalent formulation of the 

ICP and outlines conditions necessary for obtaining its solution. Section 3 presents the 

conclusions, summarizing the key insights and implications of the study. 

 

 

2 Main Results 

 

We start by outlining certain fundamental notations that will be utilized in this study. We take 

into account real matrices and vectors. R
n
 implies the n dimensional space of real entries. r ∈ 

R
n
 is a column vector and ri implies i

th
 component of the vector r ∈ R

n
. 

Now, we provide an equivalent expression of the implicit complementarity problem. The 

equivalence form of ICP(A, b, f ) is  

                                P(r) = H(r) − (H(r) − (Ar + b))+, 

In the following result, we demonstrate that the equivalently formulation of ICP(A, b, f) 

has the same solution. 

Theorem 2.1. Suppose A ∈ R
n×n

 and b ∈ R
n
. Then r∗ ∈ R

n
 be the solution of ICP(A, b, f ) if 

and only if P(r∗) = 0, where P : R
n
 → R

n
 is defined as 

P(r) = H(r) − (H(r) − (Ar + b))+,                            (2.1) 

Proof. Suppose P(r∗) = 0, it follows that (H(r∗) −(H(r∗) −(Ar∗ + b))+) = 0. This implies that 

H(r∗) = (H(r∗) − (Ar∗ + b))+,                                                  (2.2) 

Component-wise, we consider two cases: 

Case 1. when Hi(r∗) ≥ (Ar∗ + b)i, where Hi(r∗) denotes the i
th

 component of the H(r∗). 

Then Equation (2.2) can be written as Hi(r∗) = Hi(r∗) − (Ar∗ + b)i. 

It follows that, Fi(r∗) = (Ar∗ + b)i = 0. 

Case 2. when Hi(r∗) < (Ar∗ + b)i ⇒ ((Ar∗ + b)i − Hi(r∗)) < 0. Then, we get Hi(r∗) = 0. 

From case (1) and case (2), Hi(r∗)Fi(r∗) = 0 ∀ i ⇒ H(r∗)
T
 F(r∗) = 0. 

Conversely, let r∗ be the solution of system (1.1). By complementary condition of ICP, 

either Hi(r∗) = 0 or Fi(r∗) = 0 ∀ i. 

Component-wise, we consider two cases: 

    Case 1. If Hi(r∗) = 0 and Fi(r∗) > 0, Equation (2.1) becomes  

Pi(r∗) = (−(−(Ar∗ +b))+) ⇒ Pi(r∗) = 0, 

Case 2. If Hi(r∗) > 0 and Fi(r∗) = 0, then Pi(r∗) = (Hi(r∗) − (Hi(r∗))+) ⇒ Pi(r∗) = 0. 

From case (1) and case (2), we get Pi(r∗) = 0 ∀ i. Then P(r∗) = 0.                                  □ 

  Remark 2.1. Let S(r) = H(r) − P(r), then r∗ is the solution of ICP(A, b, f ) if and only if 

S(r∗) = H(r∗). 
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In the following result, we show that the ICP(A, b, f) can be equivalently formulated as 

an equation with Ω1, Ω2 ∈ R
n×n

 be two positive diagonal matrices whose solution remains 

unchanged. 

Lemma 2.1. Suppose A ∈ R
n×n

 and b ∈ R
n
. Let Ω1, Ω2 ∈ R

n×n
 be two positive diagonal 

matrices and define the mapping  ̅(r) = (Ω1H(r) − (Ω1H(r) − Ω2(Ar + b))+). Then r∗ is the 

solution of ICP(A, b, f ) if and only if  ̅(r∗) = 0. 

Proof. Suppose  ̅ (r∗) = 0, it follows that (Ω1H(r∗) − (Ω1H(r∗) − Ω2(Ar∗ + b))+) = 0. 

Then we write 

Ω1H(r∗) = (Ω1H(r∗) − Ω2(Ar∗ + b))+,                                (2.3) 

Component-wise, we consider two cases: 

Case 1. when (Ω1H(r∗))i ≥ (Ω2(Ar∗ + b))i, then Equation (2.2) becomes 

(Ω1H(r∗))i = (Ω1H(r∗))i − (Ω2(Ar∗ + b))i, 

Then, (Ω2(Ar∗ + b))i = 0. This implies Fi(r∗) = (Ar∗ + b)i = 0. 

Case 2. when (Ω1H(r∗))i < (Ω2(Ar∗ + b))i, this implies that: 

 ((Ω2(Ar∗ + b))i −(Ω1H(r∗))i) < 0 

Then, we get (Ω1H(r∗))i = 0 ⇒ Hi(r∗) = 0. 

From case (1) and case (2), we obtain Hi(r∗)Fi(r∗) = 0 ∀ i. Hence, H(r∗)
T
 F(r∗) = 0. 

Conversely, let r∗ be the solution of system (1.1). Then component-wise, we consider two 

cases: 

Case 1. when Hi(r∗) = 0 and Fi(r∗) > 0 implies   ̅i(r∗) = −(−(Ω2(Ar∗ + b))i)+⇒  ̅i(r∗) = 0. 

Case 2. when Hi(r∗)>0 and Fi(r∗) = 0, then  ̅i(r∗) = ((Ω1H(r∗))i −((Ω1H(r∗))i)+).  

Thus,  ̅i(r∗) = 0. 

From case (1) and case (2), we obtain  ̅ (r∗) = 0.                     □ 

In the following result, we show that the ICP(A, b, f) can be equivalently formulated as 

an equation with any strictly increasing function such that δ(0)= 0,  whose solution must be 

same as the ICP(A, b, f). 

Theorem 2.2. Suppose A ∈ R
n×n

 and b ∈ R
n
. Let δ : R → R be any strictly increasing function 

such that δ(0)= 0 .Then r∗ is the solution of ICP(A, b, f ) if and only if G(r∗) = 0, G is the 

function from R
n
 to R

n
, given as 

Gi(r) = δ(|(Ar + b)i − Hi(x)|) − δ((Ar + b)i) − δ(Hi(x)), i = 1, 2, . . . , n,       (2.4)  

Proof. For some i, let Hi(r∗) < 0. Then it follows that 

            0 > δ(Hi(r∗)) = δ(Fi(r∗) − Hi(r∗)) − δ(Fi(r∗)) ≥ −δ(Fi(r∗)),                     (2.5) 

Thus, Fi(r∗) > 0 and Fi(r∗) − Hi(r∗) > Fi(r∗) > 0. This implies that 

δ(|Fi(r∗) − Hi(r)|) = δ(Fi(r∗) − Hi(r∗)) > δ(Fi(r)),                                        (2.6) 

From inequalities (2.5) and Equation (2.6), we get G(r∗) > 0, this is the contradiction. 

If  Hi(r∗) > 0 and Fi(r∗) > 0 for some i. Then, we consider two possibilities: 

 When Hi(r∗) > Fi(r∗), then δ(|Fi(r∗) − Hi(r∗)|) = δ(Hi(r∗) − Fi(r∗)) < δ(Hi(r∗)). Therefore  

δ(|Fi(r∗) − Hi(r∗)|) −δ(Hi(r∗)) < 0, 

It follows that 

Gi(r∗) < 0,                                                   (2.7) 

 When Fi(r∗) > Hi(r∗), then δ(|Fi(r∗) − Hi(r∗)|) = δ(Fi(r∗) − Hi(r∗)) < δ(Fi(r∗)). 

Hence δ(|Fi(r∗) − Hi(r∗)|) − δ(Fi(r∗)) < 0. This implies that 

Gi(r∗) < 0,                                                           (2.8) 

From inequalities (2.7) and (2.8), we must have Gi(r∗) < 0, again a contradiction.  

Therefore, r∗ solves the ICP(A, b, f ). 

Conversely, let r∗ be the solution of ICP(A, b, f ), then either Hi(r∗) = 0 or Fi(r∗) = 0 ∀ i. 

Suppose Hi(r∗) = 0 and Fi(r∗) > 0, then Gi(r∗) = δ(|Fi(r∗)|) − δ(Fi(r∗)). 
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This implies that Gi(r∗) = 0. 

When Fi(r∗) = 0 and Hi(r∗) > 0, Then Gi(r∗) = δ(|−Hi(r∗)|) − δ(Hi(r∗)). 

This implies that Gi(r∗) = 0 ∀ i. Therefore, G(r∗) = 0.                                      □ 

 

 

3 Conclusion 

In this article, we presented an equivalent formulation of the implicit complementarity 

problem. We demonstrated that the solution of this equivalent formulation is identical to the 

solution of the original implicit complementarity problem. Additionally, by utilizing a strictly 

increasing function δ, we provided another equivalent form of the implicit complementarity 

problem. The concept of equivalent formulations proves to be an effective approach for 

solving complementarity problems.  
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