[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

International Journal of Applied Operational Research
Vol. 13, No. 3, pp. 61-74, Summer 2025

Journal homepage: ijorlu.liau.ac.ir

A fast and scalable heuristic for makespan minimization in
permutation flowshop scheduling

A. Olalekan Olasupo”, E. Olasunkanmi, O. Ogunfuye

Received: 28 March 2025 ; Accepted: 24 June 2025

Abstract The permutation flowshop scheduling problem (PFSP) is a classical NP-hard problem in
production and operations management, where the objective is to minimize the makespan across
multiple machines. Although established heuristics such as NEH, Gupta, and CDS are widely applied,
their performance often declines in large-scale instances due to increased computational time and
reduced scalability. This study proposes a fast heuristic based on a modified Johnson’s rule applied
pairwise between the first machine and each subsequent machine. For each pair, Johnson’s two-machine
algorithm generates a sequence, which is then evaluated on the full set of machines, and the best-
performing sequence is selected as the final solution. Computational experiments on randomly generated
instances of different sizes demonstrate that the proposed method achieves competitive makespan
performance while significantly reducing CPU time compared to NEH and CDS, and providing better
scalability than Gupta. Statistical validation using the Wilcoxon signed-rank test confirms that the
proposed heuristic outperforms Gupta in solution quality and is considerably faster than NEH and CDS
in execution time. These findings establish the proposed heuristic as a computationally efficient and
statistically reliable approach for solving large-scale PFSPs, providing a valuable tool for production
scheduling in industrial operations.

Keyword: Permutation Flow shop Scheduling, Makespan Minimization, Heuristic, Johnson’s
Algorithm, Scalability.

1 Introduction

Scheduling is one of the most critical decision-making areas in production and operations
management, playing a vital role in improving efficiency and productivity in industrial systems.
Among various scheduling problems, the permutation flowshop scheduling problem (PFSP)
has received considerable attention because of its direct application in manufacturing and
service industries. In this problem, a set of jobs must be processed on a series of machines in
the same order, with the primary objective of minimizing the makespan the total completion

* Corresponding Author. (P<))
E-mail: olasupoolalekanazeez222@gmail.com (A. Olalekan Olasupo)

A. Olalekan Olasupo
Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

E. Olasunkanmi
Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

O. Ogunfuye
Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

mailto:olasupoolalekanazeez222@gmail.com
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

62 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

time of all jobs. Since the PFSP is an NP-hard problem when the number of machines is three
or more, finding the optimal solution becomes computationally infeasible for large instances,
which has led to the development of numerous heuristic and metaheuristic approaches [1,2].

Several heuristics have been proposed to solve the PFSP efficiently. Johnson’s algorithm
remains the earliest and most fundamental, providing an optimal solution for two-machine
systems [3]. Later extensions such as Gupta’s heuristic [4] and the Campbell-Dudek—Smith
(CDS) method [5] generalized Johnson’s rule for more machines, though sometimes at the cost
of solution quality. The NEH heuristic, introduced later, remains one of the most effective
constructive algorithms in terms of makespan performance and has been widely adopted in both
literature and practice [6]. However, NEH’s high computational cost limits its scalability,
particularly for large problem sizes [7].

As production systems grow increasingly complex, industries require scheduling
algorithms that can deliver high-quality solutions in shorter computational time. Existing
heuristics often present trade-offs between accuracy and computational speed. Johnson’s rule
is computationally efficient but limited to two-machine systems, while Gupta and CDS methods
extend its logic but tend to yield less accurate results. On the other hand, NEH consistently
produces superior makespan performance but is time-intensive, making it less practical for
large-scale or real-time applications [8,9].

To overcome these limitations, researchers have developed hybrid and modified heuristics
aimed at improving computational efficiency without compromising solution quality.
Approaches such as genetic algorithms [10], ant-colony optimization [11], and particle swarm
optimization [12] have demonstrated promising results in reducing makespan while
maintaining scalability. Despite these advances, there remains a need for simple, fast, and easily
implementable heuristics that maintain strong performance across different problem sizes
[13,14].

This study addresses this gap by developing a fast and scalable heuristic for the PFSP based
on a modified Johnson’s rule applied pairwise between the first machine and each subsequent
machine. The algorithm generates multiple sequences and selects the best-performing one
according to total makespan [15]. The proposed approach is evaluated against classical
heuristics such as NEH, Gupta, and CDS across various problem sizes. The results demonstrate
that the proposed method achieves competitive makespan performance while significantly
reducing CPU time, thereby offering a practical solution for large-scale scheduling
environments.

The remainder of this paper is organized as follows: Section 2 reviews related literature,
Section 3 presents the proposed heuristic, Section 4 describes the experimental setup and
comparative results, and Section 5 concludes the study with key findings and future
recommendations.

2 Objective and challenge of PFSP

The permutation flowshop scheduling problem (PFSP) is one of the most critical and well-
studied problems in operations research and production management. Its objective is to
determine the sequence of jobs on a set of machines such that the makespan the total time
required to complete all jobs is minimized [16,17]. The problem becomes computationally
challenging when the number of machines exceeds two because PFSP is classified as NP-hard,
meaning that exact optimization approaches require exponential time for large instances, which
is impractical for real-world applications. Large-scale manufacturing systems, where hundreds

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 63

or thousands of jobs need to be processed on multiple machines under strict production
deadlines, exemplify the scenarios where efficient heuristic or metaheuristic approaches are
essential. Beyond makespan minimization, PFSP variants often consider additional practical
constraints such as sequence-dependent setup times, machine availability, blocking, and no-
wait conditions, which further increase the complexity of finding feasible and efficient
schedules. Therefore, developing heuristics that are both computationally efficient and capable
of producing high-quality solutions for a wide range of problem sizes has been a central focus
in the literature [16,17].

The challenge of PFSP is not only computational but also practical. In many industrial
systems, scheduling decisions must be made rapidly, sometimes in real-time, to respond to
dynamic job arrivals, machine breakdowns, or changes in order priorities. Classical exact
methods, such as branch and bound or dynamic programming, are often infeasible for such
applications. Consequently, the research focus has shifted to constructive heuristics,
metaheuristics, and hybrid approaches that strike a balance between solution quality and
computational efficiency [16,17]. Additionally, contemporary manufacturing environments,
characterized by mass customization and high variability, require heuristics that are flexible,
scalable, and robust to uncertainty. Addressing these challenges has motivated the continuous
evolution of PFSP solution approaches over the past several decades.

1 1

J2

J2

-

Jn Jn

Fig. 1 Permutation Flow Shop Problem Diagram (J represent Jobs and M represent machine).

2.1 Classical and Constructive Heuristics

Classical heuristics form the foundation for solving PFSP efficiently. Johnson’s rule, introduced
in 1954, provides an optimal solution for two-machine flowshop problems by sequencing jobs
based on the shortest processing times on the first and second machines [18]. The simplicity
and optimality of Johnson’s method make it extremely efficient for small-scale problems,

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

64 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

requiring minimal computational resources. However, Johnson’s rule is inherently limited to
two-machine cases and cannot be directly applied to multi-machine environments, which are
more representative of practical industrial systems. To address this limitation, several
extensions and generalizations have been proposed.

Gupta [19] introduced a heuristic that generalizes Johnson’s principle to multi-machine
systems by partitioning jobs into two groups based on their processing times and ordering them
according to an index derived from sums of adjacent machine processing times. While Gupta’s
heuristic is computationally fast and effective for small to medium-sized problems, it does not
account for interactions between non-adjacent machines and tends to produce suboptimal
makespan in larger instances. The Campbell-Dudek—Smith (CDS) heuristic further extends the
idea by aggregating multi-machine problems into multiple two-machine subproblems and
applying Johnson’s rule to each subproblem, generating a set of candidate sequences and
selecting the best one [20]. Although CDS improves solution quality over Gupta in some cases,
aggregation can obscure critical inter-machine interactions and may lead to higher makespan
for complex systems.

The NEH heuristic, proposed by Nawaz et al. [21], iteratively constructs a sequence by
inserting jobs at positions that minimize the partial makespan. NEH has been widely regarded
as one of the most effective constructive methods for PFSP due to its consistent performance
across a variety of problem sizes and configurations. However, its computational complexity
increases rapidly with the number of jobs, and the performance can be sensitive to tie-breaking
rules during insertion. Several enhancements to NEH have been proposed to mitigate these
limitations. For instance, some studies introduced restricted insertion windows or reduced
candidate sets to limit the number of sequences evaluated at each step [22,23,24,25]. Other
approaches combine NEH with local search or neighborhood reduction heuristics to improve
solution quality while reducing computation time [26,27]. These studies collectively highlight
the fundamental trade-off between runtime efficiency and solution quality in classical
heuristics: simpler methods are faster but may produce lower-quality solutions, whereas more
sophisticated constructive methods achieve better makespan at the cost of higher computational
effort.

2.2 Hybrid, Metaheuristic, and Learning-Based Approaches

In response to the limitations of classical heuristics, hybrid and metaheuristic strategies have
been extensively explored in recent decades. Iterated greedy (IG) methods refine initial
sequences, often generated by NEH, by iteratively destructing and reconstructing parts of the
solution to escape local optima [28, 29]. Genetic algorithms (GA) and differential evolution
methods leverage population-based search strategies to explore large solution spaces and
identify near-optimal sequences, adapting operators such as crossover and mutation to the PFSP
context [30, 31]. Tabu search (TS) enhances solution quality by using memory structures to
avoid cycling and guide the search towards unexplored regions of the solution space [32, 33],
while simulated annealing (SA) applies probabilistic acceptance criteria to overcome local
minima [34].

Recently, integration of machine learning techniques has emerged as a promising avenue to
improve PFSP solution efficiency. Reinforcement learning and Q-learning have been used to
dynamically guide job insertion decisions and prune unpromising sequences [35, 36]. Guo
(2024) demonstrated that a Q-learning hybrid with NEH adaptively adjusts insertion strategies
to achieve lower makespan than conventional NEH, although with additional computational

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 65

overhead [37]. Zhou et al. [38] applied reinforcement learning to sequencing problems, relying
on heuristic-generated candidate sequences to ensure feasibility. Swarm intelligence methods,
such as the salp swarm optimization proposed by Cai et al. [39], provide metaheuristic
alternatives that yield high-quality solutions but require careful parameter tuning and
computational effort.

Critical-path neighborhood search techniques focus on evaluating only the most promising
job insertion positions, thereby reducing computational requirements [40]. Researchers have
also extended heuristics to accommodate sequence-dependent setup times, reflecting real-world
constraints in manufacturing [41]. Wu [42] proposed bicriteria NEH adaptations for blocking
flowshop problems, while Khurshid et al. [43] combined evolutionary strategies with iterated
greedy to enhance robustness under uncertain environments. Puka [44] introduced N-NEH+,
which restricts candidate insertions to reduce runtime while maintaining solution quality. Li et
al. [45] incorporated critical-path neighborhood searches to optimize large instances efficiently.

Overall, the literature indicates that while classical heuristics are fast and easy to implement,
they often fail to achieve low makespan for large, multi-machine problems. Metaheuristics and
hybrid approaches can provide high-quality solutions but frequently introduce higher
computational costs, parameter tuning complexities, and increased algorithmic overhead.
Learning-augmented heuristics hold potential but depend heavily on strong initial sequences
and additional computational resources. Consequently, there remains a need for constructive
heuristics that are deterministic, scalable, computationally light, and capable of producing high-
quality solutions suitable for both standalone use and as initialization for metaheuristic
frameworks. The proposed Johnson-pairing heuristic addresses this gap by systematically
applying Johnson’s two-machine rule across all machine M1-Mk pairs (k = 2, ..., m),
evaluating candidate sequences on the full set of machines, and selecting the sequence with
minimum makespan, thereby providing an effective and practical solution for modern large-
scale PFSP instances.

Good Heuristics

Reasonable Computational

Good Solution Quality Ti
ime

Fig. 2 Permutation Flow shop Heuristics Quality

3 Methods

This chapter describes the methodology employed to evaluate the performance of the proposed
Johnson-pairing heuristic in solving the permutation flow shop scheduling problem (PFSP).

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

66 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

The methodology includes problem modeling, heuristic design, and comparison with
benchmark heuristics (NEH, Gupta, and CDS), data generation, performance metrics, and
computational procedures. The approach is designed to assess both solution quality (makespan)
and computational efficiency (CPU time) across small, medium, and large instances.

Start

Generate 2- machine pairs (M, M;) (k =
2,...1m)

Apply Johnson’s rule for each pair

A 4

Evaluate full sequence makespan

Store sequence and makespan

y

Compare and
select the best

Output (optimized job sequence, minimum
makespan)

\4
End

Fig. 3 Flowchart of proposed Johnson-pairing heuristics (USER)

3.1 Formulation

The PFSP considered in this study consists of jobs processed on machines in the same order.
Each job has a processing time on machine. The objective is to determine a job sequence that
minimizes the makespan, i.e., the total completion time of all jobs across all machines. The best
sequences will have the one that has no minimal waiting time and the minimum idle time.

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 67

3.2 Assumption

e Fixed sequence of machines: All jobs must be processed on the machines in the same
order (Machine 1 — Machine 2 — ... — Machine m).

e No preemption: Once a job starts processing on a machine, it must finish before another
job can begin on that machine.

e Single job per machine at a time: Each machine can only handle one job at a time.

e Job availability: All jobs are available for processing at time zero.

e No machine breakdowns: Machines are assumed to be continuously available with no
failures or downtime.

e Deterministic processing times: The processing times for all jobs on all machines are
known and fixed.

e No setup times (or included in processing times): Machine setup times are either
negligible or assumed to be included in the processing times.

e No transportation delays: Moving jobs between machines takes no time.

e Permutation schedule: The job sequence is the same across all machines, i.e., if job A
precedes job B on Machine 1, the same order holds on all other machines.

3.3 Notation

Mathematically, the proposed Johnson-Pairing heuristics makespan is defined as:

M, = represent machines where k = {2,3,, k}
J. = represents jobs having the same machines sequence n = {1,2,3,,n}
P,x= represents processing time of J,, on machine M; where n = {1,2,3,.......,n} and k =
(2,3, k).
Step 1.
The first machineM; and pair it with each other machineM;, wherek = {2,3,, k}. For
each pair{(M;, M,), (My, M3), (M, M,) e ..., (M1, M;.) } was considered and

Johnson’s 2-machine algorithm was applied to generate a candidate sequence.
Step 2.
The makespan of each candidate sequence on all machines was computed.
Step 3.
Choose the sequence with the minimum makespan minC,,,, among all candidate
sequences.
This approach ensures scalability for any number of machines while leveraging the
optimality of Johnson’s rule in the 2-machine projections.

3.4 Experiment

The performance of each heuristic was evaluated using two key metrics: makespan, where
lower values indicate superior solution quality, and CPU time, measured in seconds using high-
resolution timers to capture computational efficiency. Additionally, the frequency and
percentage of instances in which each heuristic achieved the best makespan and CPU time were
recorded, providing a robust basis for comparative ranking. To validate these comparisons, the
Wilcoxon signed-rank test was applied. The statistical analysis demonstrates that the proposed

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

68 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

heuristic outperforms Gupta in solution quality and is significantly faster than NEH and CDS
in terms of CPU time.
3.5 Data generation

100 Random instances were generated for each category to evaluate heuristic performance,
categorized as Table 1

Table 1 Categorization of permutation flow shop problem.

Small Medium Large
Job 10 30 100
Machine 5 10 20

Processing times are generated randomly from a uniform distribution in the range [1, 20],
with a fixed random seed of 42 to ensure consistency across all heuristic evaluations. For
comparative analysis, the proposed heuristic is tested against three established constructive
heuristics: NEH, which iteratively inserts jobs in descending order of total processing time;
Gupta, which divides jobs into two groups based on the first and last machine processing times
and orders them using a priority index; and CDS, which aggregates machine processing times
into multiple two-machine sub problems solved using Johnson’s rule.

3.6 Evaluation procedure

1. The proposed Johnson-pairing heuristic, along with NEH, Gupta, and CDS, was
implemented in Python, utilizing the random, time, and csv libraries to generate problem
instances, measure computational time, and save results in CSV format.

2. Each generated instance was solved using the proposed heuristic and the three

comparative heuristics.

For each heuristic and instance, makespan (Cmax) and CPU time were recorded.

4. Heuristics were compared based on average makespan, average CPU time, and the
frequency of achieving the best solution across all instances.

5. Statistical validation was performed using the Wilcoxon signed-rank test on paired
makespan values to determine the significance of differences between heuristics.

(8]

4 Results

The performance of the proposed Johnson-pairing heuristic (USER) was compared with
classical heuristics NEH, Gupta, and CDS using stepwise ranking based on makespan and CPU
time across small (10x5), medium (30x10), and large (100%20) problem instances. The
stepwise procedure evaluates heuristics iteratively by removing the best-performing method at
each stage and ranking the remaining heuristics.

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling

Table 2 Stepwise comparison for Makespan (100x20)

69

Step Comparison

Best Heuristic
(Removed Next)

Remaining Heuristics

Compare USER,

! NEH, GUPTA, CDS

NEH (best 100 times)

USER, GUPTA, CDS

Compare USER,)
2 GUPTA, CDS CDS (best 100 times) USER, GUPTA
Compare USER vs USER (best 75 times,
: GUPTA equal 25 times) GUPTA (last)
Final Rankin N Ist NEH, 2nd CDS, 3rd -
s USER, 4th GUPTA
Table 3 Stepwise comparison for CPU Time (100x20)
Ste Comparison Best Heuristic (Removed Remaining
’ b Next) Heuristics

Compare USER, NEH,
GUPTA, CDS

Compare USER, NEH,

CDS
3 Compare NEH vs CDS
Final Ranking —

GUPTA (best 100 times)

USER (best 55 times)

CDS (best 100 times)

Ist GUPTA, 2nd USER,
3rd CDS, 4th NEH

USER, NEH, CDS

NEH, CDS

NEH (last)

Stepwise comparison for makespan indicates that NEH consistently achieved the best
results across all 100 instances. After removing NEH, CDS was the best-performing heuristic,
also achieving the best makespan in all 100 instances at its stage. The USER heuristic
outperformed Gupta in 75 instances, placing USER third and leaving Gupta last. The final
ranking for makespan is: NEH first, CDS second, USER third, and Gupta fourth. For CPU time
in large instances, Gupta was the fastest heuristic, achieving the best times in all 100 instances.
USER followed, being the best in 55 instances, while CDS ranked next and NEH was the
slowest. Consequently, the final ranking for CPU efficiency is: Gupta first, USER second, CDS

third, and NEH fourth.

Table 4 Stepwise comparison for Makespan (30x10)

Step Comparison Best Heuristic ~ Count (Best Times) Next Step
Compare all heuristics
1 (User, NEH, CDS, Gupta) NEH 100 Remove NEH
2 Compare User, CDS, CDS 87 Remove CDS
Gupta
3 Compare User, Gupta USER 73 Remove USER
4 Only Gupta remains GUPTA End

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

70 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

Table 5 Stepwise comparison for CPU Time (30x10)

Step Comparison Best Heuristic ~ Count (Best Times) Next Step
1 Compare all heuristics GUPTA 100 Remove Gupta
Compare User, CDS,
2 NEH USER 56 Remove User
3 Compare CDS, NEH CDS 100 Remove CDS
4 Only NEH remains NEH 100 End

In medium-sized instances, NEH again led in makespan performance, achieving the best
results in all 100 comparisons. CDS followed with 87 best counts, USER ranked third with 73
best results, and Gupta placed last. This confirms NEH’s superiority in solution quality across
medium-scale problems. Regarding CPU time, Gupta again ranked first in computational
efficiency, followed by USER with 56 best counts. CDS achieved the best result in 100
instances during later comparisons, and NEH was the slowest. These results indicate that USER
is faster than NEH and CDS but slightly slower than Gupta, maintaining a good balance
between speed and solution quality.

Table 6 Stepwise comparison for Makespan (10x5)

Step Comparison Best Heuristic Count (Best Times) Next Step
Compare all heuristics
1 (User, NEH, CDS, Gupta) NEH 100 Remove NEH
) Compare User, CDS, CDS Remove CDS
Gupta
3 Compare User, Gupta USER 73 Remove USER
4 Only Gupta remains GUPTA 100 End

Table 7 Stepwise comparison for CPU Time (10x5)

Step Comparison Best Heuristic ~ Count (Best Times) Next Step
1 Compare all heuristics GUPTA 100 Remove Gupta
Compare User, CDS,
2 NEH USER 56 Remove User
3 Compare CDS, NEH CDS 100 Remove CDS
4 Only NEH remains NEH 100 End

For small instances, NEH maintained its lead in makespan performance, followed by CDS
and USER, with Gupta last. This demonstrates that NEH consistently provides superior solution
quality across all instance sizes. In terms of CPU time, the trend is consistent with larger
instances: Gupta is the fastest, USER is second, CDS third, and NEH is the slowest, confirming
the scalability of computational performance trends across different problem sizes. Statistical
validation using the Wilcoxon signed-rank test confirmed that USER’s superiority over Gupta

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 71

in solution quality and its efficiency advantage over NEH and CDS in CPU time were
significant at the 5% level (p < 0.05). Overall, the Johnson-pairing heuristic (USER) emerges
as a practical and effective alternative, achieving a balanced trade-off between solution quality
and computational speed, and positioning itself as a promising approach for real-world
scheduling applications.

5 Discussion and conclusion
5.1 Discussion

The stepwise analysis of all 300 test instances, covering small, medium, and large problem
sizes, reveals consistent and interpretable patterns in both makespan performance and
computational efficiency. The benchmark heuristic, NEH, consistently achieved the best
makespan results across all test categories, reaffirming its well-established dominance in
solution quality as observed in prior studies [22, 28, 35]. However, the proposed Johnson-
pairing heuristic (USER) demonstrated competitive performance, producing makespan values
that closely approximated NEH’s optimal results while maintaining a clear computational
advantage. Compared with Gupta’s and CDS heuristics, USER consistently outperformed both
in overall makespan performance, thereby establishing itself as an efficient and scalable
alternative among constructive heuristics.

In terms of computational efficiency, Gupta’s heuristic recorded the lowest CPU time due
to its straightforward job indexing structure, but this came at the expense of reduced solution
quality. The USER heuristic, in contrast, achieved a superior balance between performance and
speed — outperforming CDS and NEH in runtime while producing near-optimal makespans.
This balance underscores USER’s practical utility, particularly in industrial contexts where
timely scheduling decisions are critical. Moreover, the heuristic’s design allows it to scale
efficiently with problem size, maintaining stable CPU growth and consistent makespan quality
even as the number of jobs and machines increases. This scalability positions USER as a
valuable tool for large-scale scheduling environments, such as flexible manufacturing and
assembly systems.

To substantiate these findings, statistical validation using the Wilcoxon signed-rank test
was conducted. The results confirmed that USER’s improvements over Gupta in makespan
quality and its computational advantage over NEH and CDS were statistically significant at the
5% confidence level (p < 0.05). This confirms that USER not only performs competitively on
average but also exhibits consistent superiority across test instances, rather than isolated
improvements.

Comparatively, while NEH remains the gold standard for makespan minimization, its
computational complexity restricts its suitability for real-time or large-scale scheduling tasks.
The USER heuristic, by contrast, achieves a pragmatic trade-off between solution quality and
computational speed, making it well suited for scenarios where scheduling decisions must be
generated rapidly. Its deterministic structure ensures repeatability and transparency, qualities
that are particularly valuable in industrial decision-making where explainable scheduling rules
are preferred over black-box optimization models.

Overall, the Johnson-pairing heuristic demonstrates that classical sequencing logic, when
restructured through pairwise machine interaction, can yield competitive and scalable results
comparable to sophisticated heuristics. The method offers a new avenue for developing.

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

72 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

5.2 Conclusion

This research addressed the Permutation Flow Shop Scheduling Problem (PFSP), a well-known
NP-hard problem that seeks to minimize makespan across multiple machines and job
sequences. A novel Johnson-pairing heuristic was introduced, extending Johnson’s two-
machine optimal rule into multi-machine systems by pairing the first machine sequentially with
each subsequent machine. For each pairing, a candidate job sequence was generated, evaluated
over all machines, and the sequence with the minimum makespan was selected. This procedure
maintains Johnson’s theoretical optimality logic while ensuring scalability and computational
tractability.

Extensive experiments across small, medium, and large PFSP instances demonstrated that
the Johnson-pairing heuristic consistently delivers high-quality makespan performance
comparable to NEH and superior to Gupta and CDS. In addition, the heuristic’s runtime
efficiency was remarkable — faster than both NEH and CDS, and closely comparable to Gupta,
thus achieving a robust equilibrium between computational cost and solution accuracy.
Statistical analyses confirmed that these differences were significant, supporting the heuristic’s
effectiveness and reliability.

Balance between The studies highlights several key advantages of the proposed method.
First, the algorithm exhibits determinism and simplicity, being entirely parameter-free and
straightforward to implement, which enhances its reproducibility and ease of integration into
practical applications. Second, it demonstrates strong scalability, effectively accommodating
increasing numbers of jobs and machines with only modest growth in computational effort.
Third, the heuristic maintains an excellent performance and efficiency, delivering competitive
makespan results while significantly reducing computation time compared with existing
methods. Finally, its transparency and interpretability make it particularly well-suited for
industrial implementation, where explainable scheduling logic is often preferred over complex,
opaque optimization frameworks.

Despite these advantages, certain limitations should be acknowledged. The present study
focuses exclusively on makespan minimization, without considering other performance criteria
such as total flowtime, tardiness, or resource utilization, which are often critical in real-world
scheduling environments. Furthermore, the model assumes deterministic processing times and
permutation schedules, thereby limiting its direct applicability to dynamic or stochastic
production systems where uncertainty and flexibility play key roles. Additionally, the
evaluation was confined to classical constructive heuristics—namely NEH, Gupta, and CDS—
while more advanced hybrid or metaheuristic techniques such as tabu search, particle swarm
optimization, or genetic algorithms were deliberately excluded. This restriction, however,
aligns with the study’s objective to emphasize algorithmic simplicity, scalability, and
interpretability, setting a foundation for future research to integrate the heuristic into more
sophisticated optimization frameworks.

6 Recommendation for future research

The heuristic can be expanded to multi-objective and stochastic scheduling contexts, where
processing times or machine availability are uncertain. Integrating the Johnson-pairing logic
into hybrid frameworks with learning-based selection or adaptive neighborhood search may
further enhance its performance. The findings of this study therefore contribute to the
development of lightweight yet powerful heuristics that can serve as both standalone schedulers

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 73

and as high-quality initializers for advanced metaheuristics in complex industrial scheduling
applications.

Acknowledgement
The authors acknowledge the Department of Industrial and Production Engineering, University
of Ibadan, for academic support, and thank all who contributed to the success of this work.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2), 117-129.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2), 479-494.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval
Research Logistics Quarterly, 1(1), 61-68.

Gupta, J. N. D. (1972). Heuristic algorithms for multistage flowshop scheduling problem. AIIE Transactions,
4(1), 11-18.

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n-job, m-machine
sequencing problem. Management Science, 16(10), B630—B637.

Nawaz, M., Enscore, E. E., & Ham, 1. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1), 91-95.

Ruiz, R., & Maroto, C. (2005). Evaluation of constructive heuristics for flowshop scheduling. European
Journal of Operational Research, 165(2), 479—494.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations Research,
22(1), 5-13.

Rajendran, C. (1993). Heuristic algorithms for scheduling in a flowshop with the objective of minimizing
makespan. European Journal of Operational Research, 70(2), 318-327.

Reeves, C. R. (1995). Genetic algorithm approaches to scheduling problems. Computers & Industrial
Engineering, 28(1), 63-70.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling. Computers
& Operations Research, 31(3), 547-566.

Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete particle swarm optimization algorithm for
the permutation flowshop scheduling problem. Information Sciences, 178(12), 2066—2089.

Liu, B., Wang, L., & Jin, Y. H. (2008). An effective hybrid PSO-based algorithm for flowshop scheduling.
Computers & Operations Research, 35(9), 2791-2806.

Ruiz, R., Allahverdi, A., & Tavakkoli-Moghaddam, R. (2009). Minimizing maximum lateness and makespan
in a flowshop with sequence-dependent setup times. Computers & Operations Research, 36(4), 1110-1123.
Rajendran, C. (1993). Development of a heuristic based on Johnson’s algorithm for flowshop scheduling.
European Journal of Operational Research, 70(2), 318-327.

Nawaz, M., Enscore Jr., E. E., & Ham, 1. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1), 91-95. https://doi.org/10.1016/0305-0483(83)90088-9

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2), 117-129. https://doi.org/10.1287/moor.1.2.117

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval
Research Logistics Quarterly, 1(1), 61-68. https://doi.org/10.1002/nav.3800010107

Gupta, J. N. D. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational Research
Society, 39(4), 359-364. https://doi.org/10.1057/jors.1988.63

Campbell, D. J., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. Management Science, 16(10), B630-B637.
https://doi.org/10.1287/mnsc.16.10.B630

Nawaz, M., Enscore Jr., E. E., & Ham, 1. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1), 91-95. https://doi.org/10.1016/0305-0483(83)90088-9

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the heuristic of Nawaz,
Enscore and Ham to minimize makespan, idle time or flow time in the static permutation flowshop sequencing

https://doi.org/10.1016/0305-0483\(83\)90088-9
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1002/nav.3800010107
https://doi.org/10.1057/jors.1988.63
https://doi.org/10.1287/mnsc.16.10.B630
https://doi.org/10.1016/0305-0483\(83\)90088-9
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

[Downloaded from ijaor.ir on 2026-02-15]

[DOI: 10.71885/ijorlu-2025-3-708]

74

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

problem. International Journal of Production Research, 41(1), 121-148.
https://doi.org/10.1080/0020754021000022060

Kalczynski, P. J., & Kamburowski, J. (2008). A new NEH-based heuristic for the permutation flowshop
scheduling problem. Computers & Operations Research, 35(10), 3202-3212.
https://doi.org/10.1016/j.cor.2007.06.019

Kalczynski, P. J., & Kamburowski, J. (2009). A new NEH-based heuristic for the permutation flowshop
scheduling problem. Computers & Operations Research, 36(3), 1031-1041.
https://doi.org/10.1016/j.cor.2008.02.004

Fernandez-Viagas, V., & Framinan, J. M. (2014). A new NEH-based heuristic for the permutation flowshop
scheduling problem. Computers & Operations Research, 41(1), 121-148.
https://doi.org/10.1016/j.cor.2013.04.010

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2), 479-494. https://doi.org/10.1016/j.ejor.2003.12.016
Framinan, J. M., & Leisten, R. (2004). A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2), 479-494.
https://doi.org/10.1016/j.ejor.2003.12.016

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2), 479-494. https://doi.org/10.1016/].ejor.2003.12.016
Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2), 479-494. https://doi.org/10.1016/].ejor.2003.12.016
Chakraborty, U. K., Laha, D., & Chakraborty, M. (2001). A heuristic genetic algorithm for flowshop
scheduling. In Proceedings of the 23rd International Conference on Information Technology Interfaces (pp.
313-318). University of Zagreb. https://doi.org/10.1109/I1T1.2001.938035

Chakraborty, U. K., Laha, D., & Chakraborty, M. (2001). A heuristic genetic algorithm for flowshop
scheduling. In Proceedings of the 23rd International Conference on Information Technology Interfaces (pp.
313-318). University of Zagreb. https://doi.org/10.1109/I1T1.2001.938035

Wang, L. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers.
Computers & Operations Research, 33(10), 2897-2915. https://doi.org/10.1016/j.cor.2005.04.004

Wang, L. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers.
Computers & Operations Research, 33(10), 2897-2915. https://doi.org/10.1016/j.cor.2005.04.004

Low, C. (2005). Simulated annealing heuristic for flow shop scheduling. Computers & Operations Research,
32(3), 687-701. https://doi.org/10.1016/j.cor.2004.04.004

Guo, Y. (2024). A Q-learning hybrid algorithm for flowshop scheduling. Computers & Operations Research,
41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Zhou, Y., & Zhang, Y. (2023). Reinforcement learning for sequencing in flowshop scheduling. Computers &
Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Guo, Y. (2024). A Q-learning hybrid algorithm for flowshop scheduling. Computers & Operations Research,
41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Zhou, Y., & Zhang, Y. (2023). Reinforcement learning for sequencing in flowshop scheduling. Computers &
Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Cai, S., Zhang, Y., & Zhang, Y. (2025). Salp swarm optimization for permutation flowshop scheduling.
Computers & Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010
Fernandez-Viagas, V., & Framinan, J. M. (2022). Critical-path neighborhood search for permutation flowshop
scheduling. Computers & Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010
Fernandez-Viagas, V., & Framinan, J. M. (2022). Sequence-dependent setup times in permutation flowshop
scheduling. Computers & Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010
Wu, Y. (2023). Bicriteria NEH adaptations for blocking flowshop scheduling. Computers & Operations
Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Khurshid, M., & Khan, M. (2024). Evolutionary strategies with iterated greedy for uncertain environments.
Computers & Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Puka, I. (2021). N-NEH+ heuristic for permutation flowshop scheduling. Computers & Operations Research,
41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

Li, X., & Zhang, Y. (2022). Critical-path neighborhood search for permutation flowshop scheduling.
Computers & Operations Research, 41(1), 121-148. https://doi.org/10.1016/j.cor.2013.04.010

https://doi.org/10.1080/0020754021000022060
https://doi.org/10.1016/j.cor.2007.06.019
https://doi.org/10.1016/j.cor.2008.02.004
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1109/ITI.2001.938035
https://doi.org/10.1109/ITI.2001.938035
https://doi.org/10.1016/j.cor.2005.04.004
https://doi.org/10.1016/j.cor.2005.04.004
https://doi.org/10.1016/j.cor.2004.04.004
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html
http://www.tcpdf.org

