
International Journal of Applied Operational Research

Vol. 13, No. 3, pp. 61-74, Summer 2025

Journal homepage: ijorlu.liau.ac.ir

A fast and scalable heuristic for makespan minimization in

permutation flowshop scheduling

A. Olalekan Olasupo*, E. Olasunkanmi, O. Ogunfuye

Received: 28 March 2025 ; Accepted: 24 June 2025

Abstract The permutation flowshop scheduling problem (PFSP) is a classical NP-hard problem in

production and operations management, where the objective is to minimize the makespan across

multiple machines. Although established heuristics such as NEH, Gupta, and CDS are widely applied,

their performance often declines in large-scale instances due to increased computational time and

reduced scalability. This study proposes a fast heuristic based on a modified Johnson’s rule applied

pairwise between the first machine and each subsequent machine. For each pair, Johnson’s two-machine

algorithm generates a sequence, which is then evaluated on the full set of machines, and the best-

performing sequence is selected as the final solution. Computational experiments on randomly generated

instances of different sizes demonstrate that the proposed method achieves competitive makespan

performance while significantly reducing CPU time compared to NEH and CDS, and providing better

scalability than Gupta. Statistical validation using the Wilcoxon signed-rank test confirms that the

proposed heuristic outperforms Gupta in solution quality and is considerably faster than NEH and CDS

in execution time. These findings establish the proposed heuristic as a computationally efficient and

statistically reliable approach for solving large-scale PFSPs, providing a valuable tool for production

scheduling in industrial operations.

Keyword: Permutation Flow shop Scheduling, Makespan Minimization, Heuristic, Johnson’s

Algorithm, Scalability.

1 Introduction

Scheduling is one of the most critical decision-making areas in production and operations

management, playing a vital role in improving efficiency and productivity in industrial systems.

Among various scheduling problems, the permutation flowshop scheduling problem (PFSP)

has received considerable attention because of its direct application in manufacturing and

service industries. In this problem, a set of jobs must be processed on a series of machines in

the same order, with the primary objective of minimizing the makespan the total completion

* Corresponding Author. ()

E-mail: olasupoolalekanazeez222@gmail.com (A. Olalekan Olasupo)

A. Olalekan Olasupo

Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

E. Olasunkanmi

Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

O. Ogunfuye

Department of Industrial and Production Engineering, University of Ibadan, Nigeria.

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 1 / 14

mailto:olasupoolalekanazeez222@gmail.com
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

62 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

time of all jobs. Since the PFSP is an NP-hard problem when the number of machines is three

or more, finding the optimal solution becomes computationally infeasible for large instances,

which has led to the development of numerous heuristic and metaheuristic approaches [1,2].

Several heuristics have been proposed to solve the PFSP efficiently. Johnson’s algorithm

remains the earliest and most fundamental, providing an optimal solution for two-machine

systems [3]. Later extensions such as Gupta’s heuristic [4] and the Campbell–Dudek–Smith

(CDS) method [5] generalized Johnson’s rule for more machines, though sometimes at the cost

of solution quality. The NEH heuristic, introduced later, remains one of the most effective

constructive algorithms in terms of makespan performance and has been widely adopted in both

literature and practice [6]. However, NEH’s high computational cost limits its scalability,

particularly for large problem sizes [7].

As production systems grow increasingly complex, industries require scheduling

algorithms that can deliver high-quality solutions in shorter computational time. Existing

heuristics often present trade-offs between accuracy and computational speed. Johnson’s rule

is computationally efficient but limited to two-machine systems, while Gupta and CDS methods

extend its logic but tend to yield less accurate results. On the other hand, NEH consistently

produces superior makespan performance but is time-intensive, making it less practical for

large-scale or real-time applications [8,9].

To overcome these limitations, researchers have developed hybrid and modified heuristics

aimed at improving computational efficiency without compromising solution quality.

Approaches such as genetic algorithms [10], ant-colony optimization [11], and particle swarm

optimization [12] have demonstrated promising results in reducing makespan while

maintaining scalability. Despite these advances, there remains a need for simple, fast, and easily

implementable heuristics that maintain strong performance across different problem sizes

[13,14].

This study addresses this gap by developing a fast and scalable heuristic for the PFSP based

on a modified Johnson’s rule applied pairwise between the first machine and each subsequent

machine. The algorithm generates multiple sequences and selects the best-performing one

according to total makespan [15]. The proposed approach is evaluated against classical

heuristics such as NEH, Gupta, and CDS across various problem sizes. The results demonstrate

that the proposed method achieves competitive makespan performance while significantly

reducing CPU time, thereby offering a practical solution for large-scale scheduling

environments.

The remainder of this paper is organized as follows: Section 2 reviews related literature,

Section 3 presents the proposed heuristic, Section 4 describes the experimental setup and

comparative results, and Section 5 concludes the study with key findings and future

recommendations.

2 Objective and challenge of PFSP

The permutation flowshop scheduling problem (PFSP) is one of the most critical and well-

studied problems in operations research and production management. Its objective is to

determine the sequence of jobs on a set of machines such that the makespan the total time

required to complete all jobs is minimized [16,17]. The problem becomes computationally

challenging when the number of machines exceeds two because PFSP is classified as NP-hard,

meaning that exact optimization approaches require exponential time for large instances, which

is impractical for real-world applications. Large-scale manufacturing systems, where hundreds

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 2 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 63

or thousands of jobs need to be processed on multiple machines under strict production

deadlines, exemplify the scenarios where efficient heuristic or metaheuristic approaches are

essential. Beyond makespan minimization, PFSP variants often consider additional practical

constraints such as sequence-dependent setup times, machine availability, blocking, and no-

wait conditions, which further increase the complexity of finding feasible and efficient

schedules. Therefore, developing heuristics that are both computationally efficient and capable

of producing high-quality solutions for a wide range of problem sizes has been a central focus

in the literature [16,17].

The challenge of PFSP is not only computational but also practical. In many industrial

systems, scheduling decisions must be made rapidly, sometimes in real-time, to respond to

dynamic job arrivals, machine breakdowns, or changes in order priorities. Classical exact

methods, such as branch and bound or dynamic programming, are often infeasible for such

applications. Consequently, the research focus has shifted to constructive heuristics,

metaheuristics, and hybrid approaches that strike a balance between solution quality and

computational efficiency [16,17]. Additionally, contemporary manufacturing environments,

characterized by mass customization and high variability, require heuristics that are flexible,

scalable, and robust to uncertainty. Addressing these challenges has motivated the continuous

evolution of PFSP solution approaches over the past several decades.

Fig. 1 Permutation Flow Shop Problem Diagram (J represent Jobs and M represent machine).

2.1 Classical and Constructive Heuristics

Classical heuristics form the foundation for solving PFSP efficiently. Johnson’s rule, introduced

in 1954, provides an optimal solution for two-machine flowshop problems by sequencing jobs

based on the shortest processing times on the first and second machines [18]. The simplicity

and optimality of Johnson’s method make it extremely efficient for small-scale problems,

𝐽1

𝐽2

.

.

𝐽𝑛

𝑀1 𝑀2 … … … 𝑀𝑛

𝐽1

𝐽2

.

.

𝐽𝑛

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 3 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

64 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

requiring minimal computational resources. However, Johnson’s rule is inherently limited to

two-machine cases and cannot be directly applied to multi-machine environments, which are

more representative of practical industrial systems. To address this limitation, several

extensions and generalizations have been proposed.

Gupta [19] introduced a heuristic that generalizes Johnson’s principle to multi-machine

systems by partitioning jobs into two groups based on their processing times and ordering them

according to an index derived from sums of adjacent machine processing times. While Gupta’s

heuristic is computationally fast and effective for small to medium-sized problems, it does not

account for interactions between non-adjacent machines and tends to produce suboptimal

makespan in larger instances. The Campbell–Dudek–Smith (CDS) heuristic further extends the

idea by aggregating multi-machine problems into multiple two-machine subproblems and

applying Johnson’s rule to each subproblem, generating a set of candidate sequences and

selecting the best one [20]. Although CDS improves solution quality over Gupta in some cases,

aggregation can obscure critical inter-machine interactions and may lead to higher makespan

for complex systems.

The NEH heuristic, proposed by Nawaz et al. [21], iteratively constructs a sequence by

inserting jobs at positions that minimize the partial makespan. NEH has been widely regarded

as one of the most effective constructive methods for PFSP due to its consistent performance

across a variety of problem sizes and configurations. However, its computational complexity

increases rapidly with the number of jobs, and the performance can be sensitive to tie-breaking

rules during insertion. Several enhancements to NEH have been proposed to mitigate these

limitations. For instance, some studies introduced restricted insertion windows or reduced

candidate sets to limit the number of sequences evaluated at each step [22,23,24,25]. Other

approaches combine NEH with local search or neighborhood reduction heuristics to improve

solution quality while reducing computation time [26,27]. These studies collectively highlight

the fundamental trade-off between runtime efficiency and solution quality in classical

heuristics: simpler methods are faster but may produce lower-quality solutions, whereas more

sophisticated constructive methods achieve better makespan at the cost of higher computational

effort.

2.2 Hybrid, Metaheuristic, and Learning-Based Approaches

In response to the limitations of classical heuristics, hybrid and metaheuristic strategies have

been extensively explored in recent decades. Iterated greedy (IG) methods refine initial

sequences, often generated by NEH, by iteratively destructing and reconstructing parts of the

solution to escape local optima [28, 29]. Genetic algorithms (GA) and differential evolution

methods leverage population-based search strategies to explore large solution spaces and

identify near-optimal sequences, adapting operators such as crossover and mutation to the PFSP

context [30, 31]. Tabu search (TS) enhances solution quality by using memory structures to

avoid cycling and guide the search towards unexplored regions of the solution space [32, 33],

while simulated annealing (SA) applies probabilistic acceptance criteria to overcome local

minima [34].

Recently, integration of machine learning techniques has emerged as a promising avenue to

improve PFSP solution efficiency. Reinforcement learning and Q-learning have been used to

dynamically guide job insertion decisions and prune unpromising sequences [35, 36]. Guo

(2024) demonstrated that a Q-learning hybrid with NEH adaptively adjusts insertion strategies

to achieve lower makespan than conventional NEH, although with additional computational

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 4 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 65

overhead [37]. Zhou et al. [38] applied reinforcement learning to sequencing problems, relying

on heuristic-generated candidate sequences to ensure feasibility. Swarm intelligence methods,

such as the salp swarm optimization proposed by Cai et al. [39], provide metaheuristic

alternatives that yield high-quality solutions but require careful parameter tuning and

computational effort.

Critical-path neighborhood search techniques focus on evaluating only the most promising

job insertion positions, thereby reducing computational requirements [40]. Researchers have

also extended heuristics to accommodate sequence-dependent setup times, reflecting real-world

constraints in manufacturing [41]. Wu [42] proposed bicriteria NEH adaptations for blocking

flowshop problems, while Khurshid et al. [43] combined evolutionary strategies with iterated

greedy to enhance robustness under uncertain environments. Puka [44] introduced N-NEH+,

which restricts candidate insertions to reduce runtime while maintaining solution quality. Li et

al. [45] incorporated critical-path neighborhood searches to optimize large instances efficiently.

Overall, the literature indicates that while classical heuristics are fast and easy to implement,

they often fail to achieve low makespan for large, multi-machine problems. Metaheuristics and

hybrid approaches can provide high-quality solutions but frequently introduce higher

computational costs, parameter tuning complexities, and increased algorithmic overhead.

Learning-augmented heuristics hold potential but depend heavily on strong initial sequences

and additional computational resources. Consequently, there remains a need for constructive

heuristics that are deterministic, scalable, computationally light, and capable of producing high-

quality solutions suitable for both standalone use and as initialization for metaheuristic

frameworks. The proposed Johnson-pairing heuristic addresses this gap by systematically

applying Johnson’s two-machine rule across all machine M1–Mk pairs (k = 2, …, m),

evaluating candidate sequences on the full set of machines, and selecting the sequence with

minimum makespan, thereby providing an effective and practical solution for modern large-

scale PFSP instances.

Fig. 2 Permutation Flow shop Heuristics Quality

3 Methods

This chapter describes the methodology employed to evaluate the performance of the proposed

Johnson-pairing heuristic in solving the permutation flow shop scheduling problem (PFSP).

Good Heuristics

Good Solution Quality
Reasonable Computational

Time

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 5 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

66 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

The methodology includes problem modeling, heuristic design, and comparison with

benchmark heuristics (NEH, Gupta, and CDS), data generation, performance metrics, and

computational procedures. The approach is designed to assess both solution quality (makespan)

and computational efficiency (CPU time) across small, medium, and large instances.

Fig. 3 Flowchart of proposed Johnson-pairing heuristics (USER)

3.1 Formulation

The PFSP considered in this study consists of jobs processed on machines in the same order.

Each job has a processing time on machine. The objective is to determine a job sequence that

minimizes the makespan, i.e., the total completion time of all jobs across all machines. The best

sequences will have the one that has no minimal waiting time and the minimum idle time.

Generate 2- machine pairs ሺ𝑀1, 𝑀𝑘ሻ ሺ𝑘 =

2, … . 𝑛ሻ

Start

Apply Johnson’s rule for each pair

Evaluate full sequence makespan

Store sequence and makespan

Compare and

select the best

Output (optimized job sequence, minimum

makespan)

End

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 6 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 67

3.2 Assumption

• Fixed sequence of machines: All jobs must be processed on the machines in the same

order (Machine 1 → Machine 2 → … → Machine m).

• No preemption: Once a job starts processing on a machine, it must finish before another

job can begin on that machine.

• Single job per machine at a time: Each machine can only handle one job at a time.

• Job availability: All jobs are available for processing at time zero.

• No machine breakdowns: Machines are assumed to be continuously available with no

failures or downtime.

• Deterministic processing times: The processing times for all jobs on all machines are

known and fixed.

• No setup times (or included in processing times): Machine setup times are either

negligible or assumed to be included in the processing times.

• No transportation delays: Moving jobs between machines takes no time.

• Permutation schedule: The job sequence is the same across all machines, i.e., if job A

precedes job B on Machine 1, the same order holds on all other machines.

3.3 Notation

Mathematically, the proposed Johnson-Pairing heuristics makespan is defined as:

𝑀𝑘 = represent machines where 𝑘 = {2,3, … … . , 𝑘}

𝐽𝑛 = represents jobs having the same machines sequence 𝑛 = {1,2,3, … … . , 𝑛}

𝑃𝑛𝑘= represents processing time of 𝐽𝑛 on machine 𝑀𝑘 where 𝑛 = {1,2,3, … … . , 𝑛} and 𝑘 =
 {2,3, … … . , 𝑘}.

Step 1.

The first machine𝑀1 and pair it with each other machine𝑀𝑘, where𝑘 = {2,3, … … . , 𝑘}. For

each pair{ሺ𝑀1, 𝑀2ሻ, ሺ𝑀1, 𝑀3ሻ, ሺ𝑀1, 𝑀4ሻ … … … … , ሺ𝑀1, 𝑀𝑘ሻ } was considered and

Johnson’s 2-machine algorithm was applied to generate a candidate sequence.

Step 2.

The makespan of each candidate sequence on all machines was computed.

Step 3.

Choose the sequence with the minimum makespan 𝑚𝑖𝑛𝐶𝑚𝑎𝑥 among all candidate

sequences.

This approach ensures scalability for any number of machines while leveraging the

optimality of Johnson’s rule in the 2-machine projections.

3.4 Experiment

The performance of each heuristic was evaluated using two key metrics: makespan, where

lower values indicate superior solution quality, and CPU time, measured in seconds using high-

resolution timers to capture computational efficiency. Additionally, the frequency and

percentage of instances in which each heuristic achieved the best makespan and CPU time were

recorded, providing a robust basis for comparative ranking. To validate these comparisons, the

Wilcoxon signed-rank test was applied. The statistical analysis demonstrates that the proposed

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 7 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

68 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

heuristic outperforms Gupta in solution quality and is significantly faster than NEH and CDS

in terms of CPU time.

3.5 Data generation

100 Random instances were generated for each category to evaluate heuristic performance,

categorized as Table 1

Table 1 Categorization of permutation flow shop problem.

 Small Medium Large

Job 10 30 100

Machine 5 10 20

Processing times are generated randomly from a uniform distribution in the range [1, 20],

with a fixed random seed of 42 to ensure consistency across all heuristic evaluations. For

comparative analysis, the proposed heuristic is tested against three established constructive

heuristics: NEH, which iteratively inserts jobs in descending order of total processing time;

Gupta, which divides jobs into two groups based on the first and last machine processing times

and orders them using a priority index; and CDS, which aggregates machine processing times

into multiple two-machine sub problems solved using Johnson’s rule.

3.6 Evaluation procedure

1. The proposed Johnson-pairing heuristic, along with NEH, Gupta, and CDS, was

implemented in Python, utilizing the random, time, and csv libraries to generate problem

instances, measure computational time, and save results in CSV format.

2. Each generated instance was solved using the proposed heuristic and the three

comparative heuristics.

3. For each heuristic and instance, makespan (Cmax) and CPU time were recorded.

4. Heuristics were compared based on average makespan, average CPU time, and the

frequency of achieving the best solution across all instances.

5. Statistical validation was performed using the Wilcoxon signed-rank test on paired

makespan values to determine the significance of differences between heuristics.

4 Results

The performance of the proposed Johnson-pairing heuristic (USER) was compared with

classical heuristics NEH, Gupta, and CDS using stepwise ranking based on makespan and CPU

time across small (10×5), medium (30×10), and large (100×20) problem instances. The

stepwise procedure evaluates heuristics iteratively by removing the best-performing method at

each stage and ranking the remaining heuristics.

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 8 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 69

Table 2 Stepwise comparison for Makespan (100x20)

Step Comparison
Best Heuristic

(Removed Next)
Remaining Heuristics

1
Compare USER,

NEH, GUPTA, CDS
NEH (best 100 times) USER, GUPTA, CDS

2
Compare USER,

GUPTA, CDS
CDS (best 100 times) USER, GUPTA

3
Compare USER vs

GUPTA

USER (best 75 times,

equal 25 times)
GUPTA (last)

Final Ranking →
1st NEH, 2nd CDS, 3rd

USER, 4th GUPTA
—

Table 3 Stepwise comparison for CPU Time (100x20)

Step Comparison
Best Heuristic (Removed

Next)

Remaining

Heuristics

1
Compare USER, NEH,

GUPTA, CDS
GUPTA (best 100 times) USER, NEH, CDS

2
Compare USER, NEH,

CDS
USER (best 55 times) NEH, CDS

3 Compare NEH vs CDS CDS (best 100 times) NEH (last)

Final Ranking →
1st GUPTA, 2nd USER,

3rd CDS, 4th NEH
—

Stepwise comparison for makespan indicates that NEH consistently achieved the best

results across all 100 instances. After removing NEH, CDS was the best-performing heuristic,

also achieving the best makespan in all 100 instances at its stage. The USER heuristic

outperformed Gupta in 75 instances, placing USER third and leaving Gupta last. The final

ranking for makespan is: NEH first, CDS second, USER third, and Gupta fourth. For CPU time

in large instances, Gupta was the fastest heuristic, achieving the best times in all 100 instances.

USER followed, being the best in 55 instances, while CDS ranked next and NEH was the

slowest. Consequently, the final ranking for CPU efficiency is: Gupta first, USER second, CDS

third, and NEH fourth.

Table 4 Stepwise comparison for Makespan (30x10)

Step Comparison Best Heuristic Count (Best Times) Next Step

1
Compare all heuristics

(User, NEH, CDS, Gupta)
NEH 100 Remove NEH

2
Compare User, CDS,

Gupta
CDS 87 Remove CDS

3 Compare User, Gupta USER 73 Remove USER

4 Only Gupta remains GUPTA End

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 9 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

70 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

Table 5 Stepwise comparison for CPU Time (30x10)

Step Comparison Best Heuristic Count (Best Times) Next Step

1 Compare all heuristics GUPTA 100 Remove Gupta

2
Compare User, CDS,

NEH
USER 56 Remove User

3 Compare CDS, NEH CDS 100 Remove CDS

4 Only NEH remains NEH 100 End

In medium-sized instances, NEH again led in makespan performance, achieving the best

results in all 100 comparisons. CDS followed with 87 best counts, USER ranked third with 73

best results, and Gupta placed last. This confirms NEH’s superiority in solution quality across

medium-scale problems. Regarding CPU time, Gupta again ranked first in computational

efficiency, followed by USER with 56 best counts. CDS achieved the best result in 100

instances during later comparisons, and NEH was the slowest. These results indicate that USER

is faster than NEH and CDS but slightly slower than Gupta, maintaining a good balance

between speed and solution quality.

Table 6 Stepwise comparison for Makespan (10x5)

Step Comparison Best Heuristic Count (Best Times) Next Step

1
Compare all heuristics

(User, NEH, CDS, Gupta)
NEH 100 Remove NEH

2
Compare User, CDS,

Gupta
CDS Remove CDS

3 Compare User, Gupta USER 73 Remove USER

4 Only Gupta remains GUPTA 100 End

Table 7 Stepwise comparison for CPU Time (10x5)

Step Comparison Best Heuristic Count (Best Times) Next Step

1 Compare all heuristics GUPTA 100 Remove Gupta

2
Compare User, CDS,

NEH
USER 56 Remove User

3 Compare CDS, NEH CDS 100 Remove CDS

4 Only NEH remains NEH 100 End

For small instances, NEH maintained its lead in makespan performance, followed by CDS

and USER, with Gupta last. This demonstrates that NEH consistently provides superior solution

quality across all instance sizes. In terms of CPU time, the trend is consistent with larger

instances: Gupta is the fastest, USER is second, CDS third, and NEH is the slowest, confirming

the scalability of computational performance trends across different problem sizes. Statistical

validation using the Wilcoxon signed-rank test confirmed that USER’s superiority over Gupta

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 10 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 71

in solution quality and its efficiency advantage over NEH and CDS in CPU time were

significant at the 5% level (p < 0.05). Overall, the Johnson-pairing heuristic (USER) emerges

as a practical and effective alternative, achieving a balanced trade-off between solution quality

and computational speed, and positioning itself as a promising approach for real-world

scheduling applications.

5 Discussion and conclusion

5.1 Discussion

The stepwise analysis of all 300 test instances, covering small, medium, and large problem

sizes, reveals consistent and interpretable patterns in both makespan performance and

computational efficiency. The benchmark heuristic, NEH, consistently achieved the best

makespan results across all test categories, reaffirming its well-established dominance in

solution quality as observed in prior studies [22, 28, 35]. However, the proposed Johnson-

pairing heuristic (USER) demonstrated competitive performance, producing makespan values

that closely approximated NEH’s optimal results while maintaining a clear computational

advantage. Compared with Gupta’s and CDS heuristics, USER consistently outperformed both

in overall makespan performance, thereby establishing itself as an efficient and scalable

alternative among constructive heuristics.

In terms of computational efficiency, Gupta’s heuristic recorded the lowest CPU time due

to its straightforward job indexing structure, but this came at the expense of reduced solution

quality. The USER heuristic, in contrast, achieved a superior balance between performance and

speed — outperforming CDS and NEH in runtime while producing near-optimal makespans.

This balance underscores USER’s practical utility, particularly in industrial contexts where

timely scheduling decisions are critical. Moreover, the heuristic’s design allows it to scale

efficiently with problem size, maintaining stable CPU growth and consistent makespan quality

even as the number of jobs and machines increases. This scalability positions USER as a

valuable tool for large-scale scheduling environments, such as flexible manufacturing and

assembly systems.

To substantiate these findings, statistical validation using the Wilcoxon signed-rank test

was conducted. The results confirmed that USER’s improvements over Gupta in makespan

quality and its computational advantage over NEH and CDS were statistically significant at the

5% confidence level (p < 0.05). This confirms that USER not only performs competitively on

average but also exhibits consistent superiority across test instances, rather than isolated

improvements.

Comparatively, while NEH remains the gold standard for makespan minimization, its

computational complexity restricts its suitability for real-time or large-scale scheduling tasks.

The USER heuristic, by contrast, achieves a pragmatic trade-off between solution quality and

computational speed, making it well suited for scenarios where scheduling decisions must be

generated rapidly. Its deterministic structure ensures repeatability and transparency, qualities

that are particularly valuable in industrial decision-making where explainable scheduling rules

are preferred over black-box optimization models.

Overall, the Johnson-pairing heuristic demonstrates that classical sequencing logic, when

restructured through pairwise machine interaction, can yield competitive and scalable results

comparable to sophisticated heuristics. The method offers a new avenue for developing.

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 11 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

72 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

5.2 Conclusion

This research addressed the Permutation Flow Shop Scheduling Problem (PFSP), a well-known

NP-hard problem that seeks to minimize makespan across multiple machines and job

sequences. A novel Johnson-pairing heuristic was introduced, extending Johnson’s two-

machine optimal rule into multi-machine systems by pairing the first machine sequentially with

each subsequent machine. For each pairing, a candidate job sequence was generated, evaluated

over all machines, and the sequence with the minimum makespan was selected. This procedure

maintains Johnson’s theoretical optimality logic while ensuring scalability and computational

tractability.

Extensive experiments across small, medium, and large PFSP instances demonstrated that

the Johnson-pairing heuristic consistently delivers high-quality makespan performance

comparable to NEH and superior to Gupta and CDS. In addition, the heuristic’s runtime

efficiency was remarkable — faster than both NEH and CDS, and closely comparable to Gupta,

thus achieving a robust equilibrium between computational cost and solution accuracy.

Statistical analyses confirmed that these differences were significant, supporting the heuristic’s

effectiveness and reliability.

Balance between The studies highlights several key advantages of the proposed method.

First, the algorithm exhibits determinism and simplicity, being entirely parameter-free and

straightforward to implement, which enhances its reproducibility and ease of integration into

practical applications. Second, it demonstrates strong scalability, effectively accommodating

increasing numbers of jobs and machines with only modest growth in computational effort.

Third, the heuristic maintains an excellent performance and efficiency, delivering competitive

makespan results while significantly reducing computation time compared with existing

methods. Finally, its transparency and interpretability make it particularly well-suited for

industrial implementation, where explainable scheduling logic is often preferred over complex,

opaque optimization frameworks.

Despite these advantages, certain limitations should be acknowledged. The present study

focuses exclusively on makespan minimization, without considering other performance criteria

such as total flowtime, tardiness, or resource utilization, which are often critical in real-world

scheduling environments. Furthermore, the model assumes deterministic processing times and

permutation schedules, thereby limiting its direct applicability to dynamic or stochastic

production systems where uncertainty and flexibility play key roles. Additionally, the

evaluation was confined to classical constructive heuristics—namely NEH, Gupta, and CDS—

while more advanced hybrid or metaheuristic techniques such as tabu search, particle swarm

optimization, or genetic algorithms were deliberately excluded. This restriction, however,

aligns with the study’s objective to emphasize algorithmic simplicity, scalability, and

interpretability, setting a foundation for future research to integrate the heuristic into more

sophisticated optimization frameworks.

6 Recommendation for future research

The heuristic can be expanded to multi-objective and stochastic scheduling contexts, where

processing times or machine availability are uncertain. Integrating the Johnson-pairing logic

into hybrid frameworks with learning-based selection or adaptive neighborhood search may

further enhance its performance. The findings of this study therefore contribute to the

development of lightweight yet powerful heuristics that can serve as both standalone schedulers

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 12 / 14

http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

A fast and scalable heuristic for makespan minimization in permutation flowshop scheduling 73

and as high-quality initializers for advanced metaheuristics in complex industrial scheduling

applications.

Acknowledgement

The authors acknowledge the Department of Industrial and Production Engineering, University

of Ibadan, for academic support, and thank all who contributed to the success of this work.

References

1. Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.

Mathematics of Operations Research, 1(2), 117–129.

2. Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.

European Journal of Operational Research, 165(2), 479–494.

3. Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1), 61–68.

4. Gupta, J. N. D. (1972). Heuristic algorithms for multistage flowshop scheduling problem. AIIE Transactions,

4(1), 11–18.

5. Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n-job, m-machine

sequencing problem. Management Science, 16(10), B630–B637.

6. Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1), 91–95.

7. Ruiz, R., & Maroto, C. (2005). Evaluation of constructive heuristics for flowshop scheduling. European

Journal of Operational Research, 165(2), 479–494.

8. Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations Research,

22(1), 5–13.

9. Rajendran, C. (1993). Heuristic algorithms for scheduling in a flowshop with the objective of minimizing

makespan. European Journal of Operational Research, 70(2), 318–327.

10. Reeves, C. R. (1995). Genetic algorithm approaches to scheduling problems. Computers & Industrial

Engineering, 28(1), 63–70.

11. Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling. Computers

& Operations Research, 31(3), 547–566.

12. Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete particle swarm optimization algorithm for

the permutation flowshop scheduling problem. Information Sciences, 178(12), 2066–2089.

13. Liu, B., Wang, L., & Jin, Y. H. (2008). An effective hybrid PSO-based algorithm for flowshop scheduling.

Computers & Operations Research, 35(9), 2791–2806.

14. Ruiz, R., Allahverdi, A., & Tavakkoli-Moghaddam, R. (2009). Minimizing maximum lateness and makespan

in a flowshop with sequence-dependent setup times. Computers & Operations Research, 36(4), 1110–1123.

15. Rajendran, C. (1993). Development of a heuristic based on Johnson’s algorithm for flowshop scheduling.

European Journal of Operational Research, 70(2), 318–327.

16. Nawaz, M., Enscore Jr., E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9

17. Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.

Mathematics of Operations Research, 1(2), 117–129. https://doi.org/10.1287/moor.1.2.117

18. Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1), 61–68. https://doi.org/10.1002/nav.3800010107

19. Gupta, J. N. D. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational Research

Society, 39(4), 359–364. https://doi.org/10.1057/jors.1988.63

20. Campbell, D. J., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the m-machine, n-job flow-

shop sequencing problem. Management Science, 16(10), B630–B637.

https://doi.org/10.1287/mnsc.16.10.B630

21. Nawaz, M., Enscore Jr., E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9

22. Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the heuristic of Nawaz,

Enscore and Ham to minimize makespan, idle time or flow time in the static permutation flowshop sequencing

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

 13 / 14

https://doi.org/10.1016/0305-0483\(83\)90088-9
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1002/nav.3800010107
https://doi.org/10.1057/jors.1988.63
https://doi.org/10.1287/mnsc.16.10.B630
https://doi.org/10.1016/0305-0483\(83\)90088-9
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html

74 A. Olalekan Olasupo et al. / IJAOR Vol. 13, No. 3, 61-74, Summer 2025 (Serial #46)

problem. International Journal of Production Research, 41(1), 121–148.

https://doi.org/10.1080/0020754021000022060

23. Kalczynski, P. J., & Kamburowski, J. (2008). A new NEH-based heuristic for the permutation flowshop

scheduling problem. Computers & Operations Research, 35(10), 3202–3212.

https://doi.org/10.1016/j.cor.2007.06.019

24. Kalczynski, P. J., & Kamburowski, J. (2009). A new NEH-based heuristic for the permutation flowshop

scheduling problem. Computers & Operations Research, 36(3), 1031–1041.

https://doi.org/10.1016/j.cor.2008.02.004

25. Fernandez-Viagas, V., & Framinan, J. M. (2014). A new NEH-based heuristic for the permutation flowshop

scheduling problem. Computers & Operations Research, 41(1), 121–148.

https://doi.org/10.1016/j.cor.2013.04.010

26. Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.

European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2003.12.016

27. Framinan, J. M., & Leisten, R. (2004). A comprehensive review and evaluation of permutation flowshop

heuristics. European Journal of Operational Research, 165(2), 479–494.

https://doi.org/10.1016/j.ejor.2003.12.016

28. Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.

European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2003.12.016

29. Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics.

European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2003.12.016

30. Chakraborty, U. K., Laha, D., & Chakraborty, M. (2001). A heuristic genetic algorithm for flowshop

scheduling. In Proceedings of the 23rd International Conference on Information Technology Interfaces (pp.

313–318). University of Zagreb. https://doi.org/10.1109/ITI.2001.938035

31. Chakraborty, U. K., Laha, D., & Chakraborty, M. (2001). A heuristic genetic algorithm for flowshop

scheduling. In Proceedings of the 23rd International Conference on Information Technology Interfaces (pp.

313–318). University of Zagreb. https://doi.org/10.1109/ITI.2001.938035

32. Wang, L. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers.

Computers & Operations Research, 33(10), 2897–2915. https://doi.org/10.1016/j.cor.2005.04.004

33. Wang, L. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers.

Computers & Operations Research, 33(10), 2897–2915. https://doi.org/10.1016/j.cor.2005.04.004

34. Low, C. (2005). Simulated annealing heuristic for flow shop scheduling. Computers & Operations Research,

32(3), 687–701. https://doi.org/10.1016/j.cor.2004.04.004

35. Guo, Y. (2024). A Q-learning hybrid algorithm for flowshop scheduling. Computers & Operations Research,

41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

36. Zhou, Y., & Zhang, Y. (2023). Reinforcement learning for sequencing in flowshop scheduling. Computers &

Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

37. Guo, Y. (2024). A Q-learning hybrid algorithm for flowshop scheduling. Computers & Operations Research,

41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

38. Zhou, Y., & Zhang, Y. (2023). Reinforcement learning for sequencing in flowshop scheduling. Computers &

Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

39. Cai, S., Zhang, Y., & Zhang, Y. (2025). Salp swarm optimization for permutation flowshop scheduling.

Computers & Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

40. Fernandez-Viagas, V., & Framinan, J. M. (2022). Critical-path neighborhood search for permutation flowshop

scheduling. Computers & Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

41. Fernandez-Viagas, V., & Framinan, J. M. (2022). Sequence-dependent setup times in permutation flowshop

scheduling. Computers & Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

42. Wu, Y. (2023). Bicriteria NEH adaptations for blocking flowshop scheduling. Computers & Operations

Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

43. Khurshid, M., & Khan, M. (2024). Evolutionary strategies with iterated greedy for uncertain environments.

Computers & Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

44. Puka, I. (2021). N-NEH+ heuristic for permutation flowshop scheduling. Computers & Operations Research,

41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

45. Li, X., & Zhang, Y. (2022). Critical-path neighborhood search for permutation flowshop scheduling.

Computers & Operations Research, 41(1), 121–148. https://doi.org/10.1016/j.cor.2013.04.010

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
25

-3
-7

08
]

 [

 D
ow

nl
oa

de
d

fr
om

 ij
ao

r.
ir

 o
n

20
26

-0
2-

15
]

Powered by TCPDF (www.tcpdf.org)

 14 / 14

https://doi.org/10.1080/0020754021000022060
https://doi.org/10.1016/j.cor.2007.06.019
https://doi.org/10.1016/j.cor.2008.02.004
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1016/j.ejor.2003.12.016
https://doi.org/10.1109/ITI.2001.938035
https://doi.org/10.1109/ITI.2001.938035
https://doi.org/10.1016/j.cor.2005.04.004
https://doi.org/10.1016/j.cor.2005.04.004
https://doi.org/10.1016/j.cor.2004.04.004
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
https://doi.org/10.1016/j.cor.2013.04.010
http://dx.doi.org/10.71885/ijorlu-2025-3-708
https://ijaor.ir/article-1-708-en.html
http://www.tcpdf.org

