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Abstract  The permutation flowshop scheduling problem (PFSP) is a classical NP-hard problem in 

production and operations management, where the objective is to minimize the makespan across 

multiple machines. Although established heuristics such as NEH, Gupta, and CDS are widely applied, 

their performance often declines in large-scale instances due to increased computational time and 

reduced scalability. This study proposes a fast heuristic based on a modified Johnson’s rule applied 

pairwise between the first machine and each subsequent machine. For each pair, Johnson’s two-machine 

algorithm generates a sequence, which is then evaluated on the full set of machines, and the best-

performing sequence is selected as the final solution. Computational experiments on randomly generated 

instances of different sizes demonstrate that the proposed method achieves competitive makespan 

performance while significantly reducing CPU time compared to NEH and CDS, and providing better 

scalability than Gupta. Statistical validation using the Wilcoxon signed-rank test confirms that the 

proposed heuristic outperforms Gupta in solution quality and is considerably faster than NEH and CDS 

in execution time. These findings establish the proposed heuristic as a computationally efficient and 

statistically reliable approach for solving large-scale PFSPs, providing a valuable tool for production 

scheduling in industrial operations. 

 

Keyword: Permutation Flow shop Scheduling, Makespan Minimization, Heuristic, Johnson’s 

Algorithm, Scalability. 

 

 

1 Introduction 

 

Scheduling is one of the most critical decision-making areas in production and operations 

management, playing a vital role in improving efficiency and productivity in industrial systems. 

Among various scheduling problems, the permutation flowshop scheduling problem (PFSP) 

has received considerable attention because of its direct application in manufacturing and 

service industries. In this problem, a set of jobs must be processed on a series of machines in 

the same order, with the primary objective of minimizing the makespan the total completion 
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time of all jobs. Since the PFSP is an NP-hard problem when the number of machines is three 

or more, finding the optimal solution becomes computationally infeasible for large instances, 

which has led to the development of numerous heuristic and metaheuristic approaches [1,2]. 

Several heuristics have been proposed to solve the PFSP efficiently. Johnson’s algorithm 

remains the earliest and most fundamental, providing an optimal solution for two-machine 

systems [3]. Later extensions such as Gupta’s heuristic [4] and the Campbell–Dudek–Smith 

(CDS) method [5] generalized Johnson’s rule for more machines, though sometimes at the cost 

of solution quality. The NEH heuristic, introduced later, remains one of the most effective 

constructive algorithms in terms of makespan performance and has been widely adopted in both 

literature and practice [6]. However, NEH’s high computational cost limits its scalability, 

particularly for large problem sizes [7]. 

As production systems grow increasingly complex, industries require scheduling 

algorithms that can deliver high-quality solutions in shorter computational time. Existing 

heuristics often present trade-offs between accuracy and computational speed. Johnson’s rule 

is computationally efficient but limited to two-machine systems, while Gupta and CDS methods 

extend its logic but tend to yield less accurate results. On the other hand, NEH consistently 

produces superior makespan performance but is time-intensive, making it less practical for 

large-scale or real-time applications [8,9]. 

To overcome these limitations, researchers have developed hybrid and modified heuristics 

aimed at improving computational efficiency without compromising solution quality. 

Approaches such as genetic algorithms [10], ant-colony optimization [11], and particle swarm 

optimization [12] have demonstrated promising results in reducing makespan while 

maintaining scalability. Despite these advances, there remains a need for simple, fast, and easily 

implementable heuristics that maintain strong performance across different problem sizes 

[13,14]. 

This study addresses this gap by developing a fast and scalable heuristic for the PFSP based 

on a modified Johnson’s rule applied pairwise between the first machine and each subsequent 

machine. The algorithm generates multiple sequences and selects the best-performing one 

according to total makespan [15]. The proposed approach is evaluated against classical 

heuristics such as NEH, Gupta, and CDS across various problem sizes. The results demonstrate 

that the proposed method achieves competitive makespan performance while significantly 

reducing CPU time, thereby offering a practical solution for large-scale scheduling 

environments. 

The remainder of this paper is organized as follows: Section 2 reviews related literature, 

Section 3 presents the proposed heuristic, Section 4 describes the experimental setup and 

comparative results, and Section 5 concludes the study with key findings and future 

recommendations. 

 

 

2 Objective and challenge of PFSP 

 

The permutation flowshop scheduling problem (PFSP) is one of the most critical and well-

studied problems in operations research and production management. Its objective is to 

determine the sequence of jobs on a set of machines such that the makespan the total time 

required to complete all jobs is minimized [16,17]. The problem becomes computationally 

challenging when the number of machines exceeds two because PFSP is classified as NP-hard, 

meaning that exact optimization approaches require exponential time for large instances, which 

is impractical for real-world applications. Large-scale manufacturing systems, where hundreds 
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or thousands of jobs need to be processed on multiple machines under strict production 

deadlines, exemplify the scenarios where efficient heuristic or metaheuristic approaches are 

essential. Beyond makespan minimization, PFSP variants often consider additional practical 

constraints such as sequence-dependent setup times, machine availability, blocking, and no-

wait conditions, which further increase the complexity of finding feasible and efficient 

schedules. Therefore, developing heuristics that are both computationally efficient and capable 

of producing high-quality solutions for a wide range of problem sizes has been a central focus 

in the literature [16,17]. 

The challenge of PFSP is not only computational but also practical. In many industrial 

systems, scheduling decisions must be made rapidly, sometimes in real-time, to respond to 

dynamic job arrivals, machine breakdowns, or changes in order priorities. Classical exact 

methods, such as branch and bound or dynamic programming, are often infeasible for such 

applications. Consequently, the research focus has shifted to constructive heuristics, 

metaheuristics, and hybrid approaches that strike a balance between solution quality and 

computational efficiency [16,17]. Additionally, contemporary manufacturing environments, 

characterized by mass customization and high variability, require heuristics that are flexible, 

scalable, and robust to uncertainty. Addressing these challenges has motivated the continuous 

evolution of PFSP solution approaches over the past several decades. 

 

Fig. 1 Permutation Flow Shop Problem Diagram (J represent Jobs and M represent machine).  

 

 

2.1 Classical and Constructive Heuristics 

 

Classical heuristics form the foundation for solving PFSP efficiently. Johnson’s rule, introduced 

in 1954, provides an optimal solution for two-machine flowshop problems by sequencing jobs 

based on the shortest processing times on the first and second machines [18]. The simplicity 

and optimality of Johnson’s method make it extremely efficient for small-scale problems, 
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requiring minimal computational resources. However, Johnson’s rule is inherently limited to 

two-machine cases and cannot be directly applied to multi-machine environments, which are 

more representative of practical industrial systems. To address this limitation, several 

extensions and generalizations have been proposed. 

Gupta [19] introduced a heuristic that generalizes Johnson’s principle to multi-machine 

systems by partitioning jobs into two groups based on their processing times and ordering them 

according to an index derived from sums of adjacent machine processing times. While Gupta’s 

heuristic is computationally fast and effective for small to medium-sized problems, it does not 

account for interactions between non-adjacent machines and tends to produce suboptimal 

makespan in larger instances. The Campbell–Dudek–Smith (CDS) heuristic further extends the 

idea by aggregating multi-machine problems into multiple two-machine subproblems and 

applying Johnson’s rule to each subproblem, generating a set of candidate sequences and 

selecting the best one [20]. Although CDS improves solution quality over Gupta in some cases, 

aggregation can obscure critical inter-machine interactions and may lead to higher makespan 

for complex systems. 

The NEH heuristic, proposed by Nawaz et al. [21], iteratively constructs a sequence by 

inserting jobs at positions that minimize the partial makespan. NEH has been widely regarded 

as one of the most effective constructive methods for PFSP due to its consistent performance 

across a variety of problem sizes and configurations. However, its computational complexity 

increases rapidly with the number of jobs, and the performance can be sensitive to tie-breaking 

rules during insertion. Several enhancements to NEH have been proposed to mitigate these 

limitations. For instance, some studies introduced restricted insertion windows or reduced 

candidate sets to limit the number of sequences evaluated at each step [22,23,24,25]. Other 

approaches combine NEH with local search or neighborhood reduction heuristics to improve 

solution quality while reducing computation time [26,27]. These studies collectively highlight 

the fundamental trade-off between runtime efficiency and solution quality in classical 

heuristics: simpler methods are faster but may produce lower-quality solutions, whereas more 

sophisticated constructive methods achieve better makespan at the cost of higher computational 

effort. 

 

 

2.2 Hybrid, Metaheuristic, and Learning-Based Approaches 

 

In response to the limitations of classical heuristics, hybrid and metaheuristic strategies have 

been extensively explored in recent decades. Iterated greedy (IG) methods refine initial 

sequences, often generated by NEH, by iteratively destructing and reconstructing parts of the 

solution to escape local optima [28, 29]. Genetic algorithms (GA) and differential evolution 

methods leverage population-based search strategies to explore large solution spaces and 

identify near-optimal sequences, adapting operators such as crossover and mutation to the PFSP 

context [30, 31]. Tabu search (TS) enhances solution quality by using memory structures to 

avoid cycling and guide the search towards unexplored regions of the solution space [32, 33], 

while simulated annealing (SA) applies probabilistic acceptance criteria to overcome local 

minima [34]. 

Recently, integration of machine learning techniques has emerged as a promising avenue to 

improve PFSP solution efficiency. Reinforcement learning and Q-learning have been used to 

dynamically guide job insertion decisions and prune unpromising sequences [35, 36]. Guo 

(2024) demonstrated that a Q-learning hybrid with NEH adaptively adjusts insertion strategies 

to achieve lower makespan than conventional NEH, although with additional computational 
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overhead [37]. Zhou et al. [38] applied reinforcement learning to sequencing problems, relying 

on heuristic-generated candidate sequences to ensure feasibility. Swarm intelligence methods, 

such as the salp swarm optimization proposed by Cai et al. [39], provide metaheuristic 

alternatives that yield high-quality solutions but require careful parameter tuning and 

computational effort. 

Critical-path neighborhood search techniques focus on evaluating only the most promising 

job insertion positions, thereby reducing computational requirements [40]. Researchers have 

also extended heuristics to accommodate sequence-dependent setup times, reflecting real-world 

constraints in manufacturing [41]. Wu [42] proposed bicriteria NEH adaptations for blocking 

flowshop problems, while Khurshid et al. [43] combined evolutionary strategies with iterated 

greedy to enhance robustness under uncertain environments. Puka [44] introduced N-NEH+, 

which restricts candidate insertions to reduce runtime while maintaining solution quality. Li et 

al. [45] incorporated critical-path neighborhood searches to optimize large instances efficiently. 

Overall, the literature indicates that while classical heuristics are fast and easy to implement, 

they often fail to achieve low makespan for large, multi-machine problems. Metaheuristics and 

hybrid approaches can provide high-quality solutions but frequently introduce higher 

computational costs, parameter tuning complexities, and increased algorithmic overhead. 

Learning-augmented heuristics hold potential but depend heavily on strong initial sequences 

and additional computational resources. Consequently, there remains a need for constructive 

heuristics that are deterministic, scalable, computationally light, and capable of producing high-

quality solutions suitable for both standalone use and as initialization for metaheuristic 

frameworks. The proposed Johnson-pairing heuristic addresses this gap by systematically 

applying Johnson’s two-machine rule across all machine M1–Mk pairs (k = 2, …, m), 

evaluating candidate sequences on the full set of machines, and selecting the sequence with 

minimum makespan, thereby providing an effective and practical solution for modern large-

scale PFSP instances. 

 
 

Fig. 2 Permutation Flow shop Heuristics Quality 
 

 

3 Methods 

This chapter describes the methodology employed to evaluate the performance of the proposed 

Johnson-pairing heuristic in solving the permutation flow shop scheduling problem (PFSP). 

Good Heuristics 

Good Solution Quality 
Reasonable Computational 

Time  
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The methodology includes problem modeling, heuristic design, and comparison with 

benchmark heuristics (NEH, Gupta, and CDS), data generation, performance metrics, and 

computational procedures. The approach is designed to assess both solution quality (makespan) 

and computational efficiency (CPU time) across small, medium, and large instances. 

 

 

Fig. 3 Flowchart of proposed Johnson-pairing heuristics (USER) 

 

 

3.1 Formulation 

 

The PFSP considered in this study consists of jobs processed on machines in the same order. 

Each job has a processing time on machine. The objective is to determine a job sequence that 

minimizes the makespan, i.e., the total completion time of all jobs across all machines. The best 

sequences will have the one that has no minimal waiting time and the minimum idle time. 

 

Generate 2- machine pairs ሺ𝑀1, 𝑀𝑘ሻ ሺ𝑘 =

2, … . 𝑛ሻ 

Start 

Apply Johnson’s rule for each pair 

Evaluate full sequence makespan 

Store sequence and makespan  

Compare and 

select the best 

Output (optimized job sequence, minimum 

makespan) 

End  
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3.2 Assumption 

  

• Fixed sequence of machines: All jobs must be processed on the machines in the same 

order (Machine 1 → Machine 2 → … → Machine m). 

• No preemption: Once a job starts processing on a machine, it must finish before another 

job can begin on that machine. 

• Single job per machine at a time: Each machine can only handle one job at a time. 

• Job availability: All jobs are available for processing at time zero. 

• No machine breakdowns: Machines are assumed to be continuously available with no 

failures or downtime. 

• Deterministic processing times: The processing times for all jobs on all machines are 

known and fixed. 

• No setup times (or included in processing times): Machine setup times are either 

negligible or assumed to be included in the processing times. 

• No transportation delays: Moving jobs between machines takes no time. 

• Permutation schedule: The job sequence is the same across all machines, i.e., if job A 

precedes job B on Machine 1, the same order holds on all other machines. 

 

 

3.3 Notation  

 

Mathematically, the proposed Johnson-Pairing heuristics makespan is defined as: 

𝑀𝑘 = represent machines where 𝑘 =  {2,3, … … . , 𝑘} 

𝐽𝑛 = represents jobs having the same machines sequence 𝑛 =  {1,2,3, … … . , 𝑛} 

𝑃𝑛𝑘= represents processing time of 𝐽𝑛 on machine 𝑀𝑘 where 𝑛 =  {1,2,3, … … . , 𝑛} and 𝑘 =
 {2,3, … … . , 𝑘}. 

Step 1. 

The first machine𝑀1 and pair it with each other machine𝑀𝑘, where𝑘 =  {2,3, … … . , 𝑘}. For 

each pair{ሺ𝑀1, 𝑀2ሻ, ሺ𝑀1, 𝑀3ሻ, ሺ𝑀1, 𝑀4ሻ … … … … , ሺ𝑀1, 𝑀𝑘ሻ } was considered and 

Johnson’s 2-machine algorithm was applied to generate a candidate sequence. 

Step 2. 

The makespan of each candidate sequence on all machines was computed. 

Step 3. 

Choose the sequence with the minimum makespan 𝑚𝑖𝑛𝐶𝑚𝑎𝑥 among all candidate 

sequences. 

This approach ensures scalability for any number of machines while leveraging the 

optimality of Johnson’s rule in the 2-machine projections. 

 

 

3.4 Experiment  

 

The performance of each heuristic was evaluated using two key metrics: makespan, where 

lower values indicate superior solution quality, and CPU time, measured in seconds using high-

resolution timers to capture computational efficiency. Additionally, the frequency and 

percentage of instances in which each heuristic achieved the best makespan and CPU time were 

recorded, providing a robust basis for comparative ranking. To validate these comparisons, the 

Wilcoxon signed-rank test was applied. The statistical analysis demonstrates that the proposed 
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heuristic outperforms Gupta in solution quality and is significantly faster than NEH and CDS 

in terms of CPU time. 

 

 

3.5 Data generation 

 

100 Random instances were generated for each category to evaluate heuristic performance, 

categorized as Table 1 

  
Table 1 Categorization of permutation flow shop problem.  

 

 Small Medium Large 

Job 10 30 100 

Machine 5 10 20 

 

Processing times are generated randomly from a uniform distribution in the range [1, 20], 

with a fixed random seed of 42 to ensure consistency across all heuristic evaluations. For 

comparative analysis, the proposed heuristic is tested against three established constructive 

heuristics: NEH, which iteratively inserts jobs in descending order of total processing time; 

Gupta, which divides jobs into two groups based on the first and last machine processing times 

and orders them using a priority index; and CDS, which aggregates machine processing times 

into multiple two-machine sub problems solved using Johnson’s rule. 

 

 

3.6 Evaluation procedure 

 

1. The proposed Johnson-pairing heuristic, along with NEH, Gupta, and CDS, was 

implemented in Python, utilizing the random, time, and csv libraries to generate problem 

instances, measure computational time, and save results in CSV format. 

2. Each generated instance was solved using the proposed heuristic and the three 

comparative heuristics. 

3. For each heuristic and instance, makespan (Cmax) and CPU time were recorded. 

4. Heuristics were compared based on average makespan, average CPU time, and the 

frequency of achieving the best solution across all instances. 

5. Statistical validation was performed using the Wilcoxon signed-rank test on paired 

makespan values to determine the significance of differences between heuristics. 

 

 

4 Results 

 

The performance of the proposed Johnson-pairing heuristic (USER) was compared with 

classical heuristics NEH, Gupta, and CDS using stepwise ranking based on makespan and CPU 

time across small (10×5), medium (30×10), and large (100×20) problem instances. The 

stepwise procedure evaluates heuristics iteratively by removing the best-performing method at 

each stage and ranking the remaining heuristics. 
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Table 2 Stepwise comparison for Makespan (100x20) 

 

Step Comparison 
Best Heuristic 

(Removed Next) 
Remaining Heuristics 

1 
Compare USER, 

NEH, GUPTA, CDS 
NEH (best 100 times) USER, GUPTA, CDS 

2 
Compare USER, 

GUPTA, CDS 
CDS (best 100 times) USER, GUPTA 

3 
Compare USER vs 

GUPTA 

USER (best 75 times, 

equal 25 times) 
GUPTA (last) 

Final Ranking → 
1st NEH, 2nd CDS, 3rd 

USER, 4th GUPTA 
— 

 
 

Table 3 Stepwise comparison for CPU Time (100x20) 

 

Step Comparison 
Best Heuristic (Removed 

Next) 

Remaining 

Heuristics 

1 
Compare USER, NEH, 

GUPTA, CDS 
GUPTA (best 100 times) USER, NEH, CDS 

2 
Compare USER, NEH, 

CDS 
USER (best 55 times) NEH, CDS 

3 Compare NEH vs CDS CDS (best 100 times) NEH (last) 

Final Ranking → 
1st GUPTA, 2nd USER, 

3rd CDS, 4th NEH 
— 

 

Stepwise comparison for makespan indicates that NEH consistently achieved the best 

results across all 100 instances. After removing NEH, CDS was the best-performing heuristic, 

also achieving the best makespan in all 100 instances at its stage. The USER heuristic 

outperformed Gupta in 75 instances, placing USER third and leaving Gupta last. The final 

ranking for makespan is: NEH first, CDS second, USER third, and Gupta fourth. For CPU time 

in large instances, Gupta was the fastest heuristic, achieving the best times in all 100 instances. 

USER followed, being the best in 55 instances, while CDS ranked next and NEH was the 

slowest. Consequently, the final ranking for CPU efficiency is: Gupta first, USER second, CDS 

third, and NEH fourth. 

 
Table 4 Stepwise comparison for Makespan (30x10) 

 

Step Comparison Best Heuristic Count (Best Times) Next Step 

1 
Compare all heuristics 

(User, NEH, CDS, Gupta) 
NEH 100 Remove NEH 

2 
Compare User, CDS, 

Gupta 
CDS 87 Remove CDS 

3 Compare User, Gupta USER 73 Remove USER 

4 Only Gupta remains GUPTA  End 
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Table 5 Stepwise comparison for CPU Time (30x10) 

 

Step Comparison Best Heuristic Count (Best Times) Next Step 

1 Compare all heuristics GUPTA 100 Remove Gupta 

2 
Compare User, CDS, 

NEH 
USER 56 Remove User 

3 Compare CDS, NEH CDS 100 Remove CDS 

4 Only NEH remains NEH 100 End 

 

In medium-sized instances, NEH again led in makespan performance, achieving the best 

results in all 100 comparisons. CDS followed with 87 best counts, USER ranked third with 73 

best results, and Gupta placed last. This confirms NEH’s superiority in solution quality across 

medium-scale problems. Regarding CPU time, Gupta again ranked first in computational 

efficiency, followed by USER with 56 best counts. CDS achieved the best result in 100 

instances during later comparisons, and NEH was the slowest. These results indicate that USER 

is faster than NEH and CDS but slightly slower than Gupta, maintaining a good balance 

between speed and solution quality. 

 
Table 6 Stepwise comparison for Makespan (10x5) 

 

Step Comparison Best Heuristic Count (Best Times) Next Step 

1 
Compare all heuristics 

(User, NEH, CDS, Gupta) 
NEH 100 Remove NEH 

2 
Compare User, CDS, 

Gupta 
CDS  Remove CDS 

3 Compare User, Gupta USER 73 Remove USER 

4 Only Gupta remains GUPTA 100 End 

 

 

Table 7 Stepwise comparison for CPU Time (10x5) 

 

Step Comparison Best Heuristic Count (Best Times) Next Step 

1 Compare all heuristics GUPTA 100 Remove Gupta 

2 
Compare User, CDS, 

NEH 
USER 56 Remove User 

3 Compare CDS, NEH CDS 100 Remove CDS 

4 Only NEH remains NEH 100 End 

 

For small instances, NEH maintained its lead in makespan performance, followed by CDS 

and USER, with Gupta last. This demonstrates that NEH consistently provides superior solution 

quality across all instance sizes. In terms of CPU time, the trend is consistent with larger 

instances: Gupta is the fastest, USER is second, CDS third, and NEH is the slowest, confirming 

the scalability of computational performance trends across different problem sizes. Statistical 

validation using the Wilcoxon signed-rank test confirmed that USER’s superiority over Gupta 
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in solution quality and its efficiency advantage over NEH and CDS in CPU time were 

significant at the 5% level (p < 0.05). Overall, the Johnson-pairing heuristic (USER) emerges 

as a practical and effective alternative, achieving a balanced trade-off between solution quality 

and computational speed, and positioning itself as a promising approach for real-world 

scheduling applications. 

 

 

5 Discussion and conclusion  

 

5.1 Discussion  

 

The stepwise analysis of all 300 test instances, covering small, medium, and large problem 

sizes, reveals consistent and interpretable patterns in both makespan performance and 

computational efficiency. The benchmark heuristic, NEH, consistently achieved the best 

makespan results across all test categories, reaffirming its well-established dominance in 

solution quality as observed in prior studies [22, 28, 35]. However, the proposed Johnson-

pairing heuristic (USER) demonstrated competitive performance, producing makespan values 

that closely approximated NEH’s optimal results while maintaining a clear computational 

advantage. Compared with Gupta’s and CDS heuristics, USER consistently outperformed both 

in overall makespan performance, thereby establishing itself as an efficient and scalable 

alternative among constructive heuristics. 

In terms of computational efficiency, Gupta’s heuristic recorded the lowest CPU time due 

to its straightforward job indexing structure, but this came at the expense of reduced solution 

quality. The USER heuristic, in contrast, achieved a superior balance between performance and 

speed — outperforming CDS and NEH in runtime while producing near-optimal makespans. 

This balance underscores USER’s practical utility, particularly in industrial contexts where 

timely scheduling decisions are critical. Moreover, the heuristic’s design allows it to scale 

efficiently with problem size, maintaining stable CPU growth and consistent makespan quality 

even as the number of jobs and machines increases. This scalability positions USER as a 

valuable tool for large-scale scheduling environments, such as flexible manufacturing and 

assembly systems. 

To substantiate these findings, statistical validation using the Wilcoxon signed-rank test 

was conducted. The results confirmed that USER’s improvements over Gupta in makespan 

quality and its computational advantage over NEH and CDS were statistically significant at the 

5% confidence level (p < 0.05). This confirms that USER not only performs competitively on 

average but also exhibits consistent superiority across test instances, rather than isolated 

improvements. 

Comparatively, while NEH remains the gold standard for makespan minimization, its 

computational complexity restricts its suitability for real-time or large-scale scheduling tasks. 

The USER heuristic, by contrast, achieves a pragmatic trade-off between solution quality and 

computational speed, making it well suited for scenarios where scheduling decisions must be 

generated rapidly. Its deterministic structure ensures repeatability and transparency, qualities 

that are particularly valuable in industrial decision-making where explainable scheduling rules 

are preferred over black-box optimization models. 

Overall, the Johnson-pairing heuristic demonstrates that classical sequencing logic, when 

restructured through pairwise machine interaction, can yield competitive and scalable results 

comparable to sophisticated heuristics. The method offers a new avenue for developing. 
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5.2 Conclusion 

 

This research addressed the Permutation Flow Shop Scheduling Problem (PFSP), a well-known 

NP-hard problem that seeks to minimize makespan across multiple machines and job 

sequences. A novel Johnson-pairing heuristic was introduced, extending Johnson’s two-

machine optimal rule into multi-machine systems by pairing the first machine sequentially with 

each subsequent machine. For each pairing, a candidate job sequence was generated, evaluated 

over all machines, and the sequence with the minimum makespan was selected. This procedure 

maintains Johnson’s theoretical optimality logic while ensuring scalability and computational 

tractability. 

Extensive experiments across small, medium, and large PFSP instances demonstrated that 

the Johnson-pairing heuristic consistently delivers high-quality makespan performance 

comparable to NEH and superior to Gupta and CDS. In addition, the heuristic’s runtime 

efficiency was remarkable — faster than both NEH and CDS, and closely comparable to Gupta, 

thus achieving a robust equilibrium between computational cost and solution accuracy. 

Statistical analyses confirmed that these differences were significant, supporting the heuristic’s 

effectiveness and reliability. 

Balance between The studies highlights several key advantages of the proposed method. 

First, the algorithm exhibits determinism and simplicity, being entirely parameter-free and 

straightforward to implement, which enhances its reproducibility and ease of integration into 

practical applications. Second, it demonstrates strong scalability, effectively accommodating 

increasing numbers of jobs and machines with only modest growth in computational effort. 

Third, the heuristic maintains an excellent performance and efficiency, delivering competitive 

makespan results while significantly reducing computation time compared with existing 

methods. Finally, its transparency and interpretability make it particularly well-suited for 

industrial implementation, where explainable scheduling logic is often preferred over complex, 

opaque optimization frameworks. 

Despite these advantages, certain limitations should be acknowledged. The present study 

focuses exclusively on makespan minimization, without considering other performance criteria 

such as total flowtime, tardiness, or resource utilization, which are often critical in real-world 

scheduling environments. Furthermore, the model assumes deterministic processing times and 

permutation schedules, thereby limiting its direct applicability to dynamic or stochastic 

production systems where uncertainty and flexibility play key roles. Additionally, the 

evaluation was confined to classical constructive heuristics—namely NEH, Gupta, and CDS—

while more advanced hybrid or metaheuristic techniques such as tabu search, particle swarm 

optimization, or genetic algorithms were deliberately excluded. This restriction, however, 

aligns with the study’s objective to emphasize algorithmic simplicity, scalability, and 

interpretability, setting a foundation for future research to integrate the heuristic into more 

sophisticated optimization frameworks. 

 

 

6 Recommendation for future research 

 

The heuristic can be expanded to multi-objective and stochastic scheduling contexts, where 

processing times or machine availability are uncertain. Integrating the Johnson-pairing logic 

into hybrid frameworks with learning-based selection or adaptive neighborhood search may 

further enhance its performance. The findings of this study therefore contribute to the 

development of lightweight yet powerful heuristics that can serve as both standalone schedulers 
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and as high-quality initializers for advanced metaheuristics in complex industrial scheduling 

applications. 
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